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Abstract

Artificial intelligence and data science play an increasingly
important role in solving today’s scientific and social chal-
lenges. To be successful, the data-driven approach to social
good requires effective collaboration between data scientists,
subject-matter experts, policymakers, and other stakeholders.
We envision a cloud platform for data science that would fa-
cilitate collaboration between stakeholders and possess AI
capabilities for discovering, benchmarking, and organizing
data analyses. Here we present a foundational technology mo-
tivated by this vision. Our system automatically extracts a
high-level dataflow graph from a data analysis. The graph de-
scribes how data flows through an analysis pipeline, including
which statistical methods are used and how they fit together.
The system requires no special annotations from the data an-
alyst and consumes analyses written in Python using standard
tools, such as Scikit-learn and StatsModels. In this paper, we
explain how our system works and how it fits into our larger
vision for a collaborative data science platform.

Introduction

Artificial intelligence (AI) and data science play an increas-
ingly important role in solving today’s scientific and social
challenges. The application of AI techniques to social good
is promising and relatively unexplored, but the sociotech-
nical nature of this domain presents special challenges.
Research and development cannot be conducted within a
closed, highly technical universe of AI specialists and data
scientists. Collaboration with subject-matter experts, policy-
makers, scientists, engineers, and other stakeholders is nec-
essary to make progress on pressing social problems such as
global poverty, hunger, disease, and climate change (Kapoor
et al. 2015). Within the collaborative process of problem
identification, research, discovery, and implementation, the
natural and social sciences provide the core body of facts and
theory upon which to base decisions. It is therefore essential
that stakeholders exchange knowledge with the relevant sci-
entific communities.

The search for a cure to multiple sclerosis (MS) illustrates
the challenges of data-driven social good under the status
quo. Despite many decades of research, our understanding
of the etiology (causes) of MS remains extremely limited.
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The evidence suggests that MS is an etiologically heteroge-
neous and multifactorial disease, i.e., MS is not caused by
any single factor, and the set of factors that interact to cause
it varies between individuals. To understand these complex
interactions, researchers must analyze patient data from di-
verse sources. To that end, the Accelerated Cure Project for
Multiple Sclerosis (ACP) has curated a large-scale reposi-
tory of MS patient data, including clinical records, patient
self-reports, and biomarker data. ACP makes its physical
biosamples and analytical data available to MS researchers
on an open-access basis to generate new insights about MS.

The efficiency of this collaborative process is limited by
our existing collaboration and knowledge sharing tools. It is
difficult for ACP to organize and synthesize all the analyses
conducted on its data resources. Individual MS researchers
consuming the ACP data must understand how their work
fits into the existing body of data analyses. Any new in-
sights arising from these analyses must be communicated
to clinicians, policymakers, donors, and other stakeholders.
At present, the tools to facilitate these activities are either
nonexistent or highly fragmented.

Of course, the problem is not confined to MS research; it
is relevant to any social good enterprise involving complex,
data-driven questions about the natural or social sciences.
Many of the Sustainable Development Goals (United Na-
tions 2015), which set a global agenda for social good, have
this character. Examples include sustaining high economic
growth (Goal 8) and combating climate change (Goal 13).

As a step towards fostering knowledge sharing and collab-
oration, we envision a cloud platform for collaborative data
science: a single space for domain experts, data scientists,
and other stakeholders to share datasets and data analyses.
It should be equipped with AI capabilities for discovering,
benchmarking, and organizing data analyses, as well as sug-
gesting relevant datasets or potential collaborators. To en-
able such features, the platform must possess a high-quality,
machine-interpretable representation of its contents, partic-
ularly its data analyses. In this work, we propose and imple-
ment a foundational technology for automatically extracting
a machine representation of a data analysis. The representa-
tion is a dataflow graph capturing the most important steps
of the analysis.

The idea that artificial intelligence will help create and
organize scientific knowledge is increasingly entering the
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popular consciousness and the research agendas of scien-
tists and AI specialists. In a recent book, Michael Nielsen
dreams of a “data web” enabling “a world where all sci-
entific knowledge has been made available online, and is
expressed in a way that can be understood by computers”
(Nielsen 2012). The extent to which this vision has been re-
alized varies greatly across disciplines. Perhaps the greatest
strides have been made in biology, where knowledge bases
like the Gene Ontology (Ashburner et al. 2000) and BioPor-
tal (Noy et al. 2009) enjoy great success. By contrast, the
machine representation of data analysis—the focus of our
work—has received relatively little attention, despite its im-
portance for science and data-driven social good.

This paper is an overview of our technical work in its
broader context. Future publications will single out partic-
ular components of our system for more rigorous treatment.
The paper is organized as follows. In the next section, we
further motivate our vision for a collaborative data science
platform, contrasting it with existing platforms. The two
subsequent sections describe the basic functionality and ar-
chitecture of our system. In the penultimate section, we sur-
vey existing work related to the dataflow representation of
data analyses. To conclude, we situate our work within some
broader trends in science and social good.

A new kind of data science platform?

Our thesis is that a cloud platform for collaborative data sci-
ence could lead to dramatic efficiency gains for the Acceler-
ated Cure Project and for the larger scientific and social good
communities. A skeptical reader may object that such plat-
forms already exist, with perhaps the further complaint that
they have failed to deliver on their promise. In response, we
propose two desiderata for a collaboration platform, which
we believe to be necessary for significant efficiency gains
but which are not, to our knowledge, satisfied by any exist-
ing offering. First, the content hosted by the platform should
not be restricted to datasets or error metrics, but should in-
clude what is probably of greatest scientific value, the data
analyses themselves. Second, the content should be repre-
sented in a machine-interpretable form.

Since these desiderata are not universally recognized, we
offer a few points in their defense. Why is it essential to
host complete data analyses, rather than summary statistics
like the prediction error on held-out data? Under the chal-
lenge model of data science, organizers define a prediction
problem and teams throughout the world compete to achieve
the best error rate. The paradigmatic platform in this class
is Kaggle, with variations offered by Driven Data (Bull,
Slavitt, and Lipstein 2016), Dream Challenges (Stolovitzky,
Monroe, and Califano 2007; Marbach et al. 2012), and
OpenML (Vanschoren et al. 2014). Naturally, the challenge
model is well-suited to questions that can be crisply formu-
lated as supervised learning problems. Such questions oc-
cur infrequently in social good and in science. More often,
research questions are open-ended, multifaceted, and irre-
ducible to a single real number captured by a loss func-
tion. On this view, data analysis is an open-ended process
that may involve (informal) exploratory data analysis and

(formal) statistical inference beyond prediction. A success-
ful platform for collaborative data science will capture these
activities. Consequently it must publish complete data anal-
yses in addition to any error metrics deemed appropriate.

Machine interpretability is important because it allows
computers to interact with the platform’s content. In the data
science domain, computer interactions could range from me-
chanical processing, such as querying the corpus of anal-
yses or benchmarking statistical models, to sophisticated
AI capabilities, such as predicting fruitful collaborations or
summarizing a corpus of data analyses. There are several
strategies for creating machine-interpretable content. Tradi-
tionally, human users provide it directly to the system in
a highly structured format for knowledge representation—
often a tedious chore. Our strategy is to automatically extract
a useful representation from the computer code implement-
ing a data analysis. A complementary approach, not pursued
here, would use natural language processing (NLP) to ex-
tract meaning from the human text in the data analysis. (In
the increasingly popular notebook formats, such as Jupyter
Notebook and R Markdown, the human text and computer
code are placed side-by-side, suggesting a possible synergy
between the two approaches.)

Among existing platforms, challenge platforms like Kag-
gle store error metrics for the uploaded models. These met-
rics are obviously machine interpretable and are utilized to
create public leaderboards of the best models. But as we
have seen, the challenge platforms do not meet the first
desideratum. There is a different category of cloud plat-
forms that treat data analyses as first-class citizens. These
platforms are designed to make existing distributed comput-
ing frameworks, such as Hadoop and Spark, and data anal-
ysis environments, such as Jupyter Notebook and R Studio,
conveniently available on the cloud. Some examplars of this
rapidly growing space are Domino Data Lab, IBM Data Sci-
ence Experience, and Microsoft Azure Machine Learning.
These platforms do not form useful machine representations
of their content. We are not aware of any existing platform
that satisfies both our desiderata.

Having motivated our hypothetical platform in the ab-
stract, we now consider some specific features that could
be enabled by a high-quality, machine-interpretable repre-
sentation of a data analysis. An obvious first application is
a sophisticated query engine. On a platform using our sys-
tem, users could ask queries like “Find all analyses that take
dataset D as input, perform clustering analysis, and output
three clusters” or “Find all plots of variable X against vari-
able Y (drawn from dataset D)”. It is impossible to make
such precise queries using existing indexes like Google
Scholar.

More ambitiously, the machine representations could
serve as input to AI algorithms that operate on data analyses.
For instance, we envision a recommender system that auto-
matically identifies relevant data analyses or potential col-
laborators on the basis of shared datasets, methodology, and
social connections. Likewise, we could try to identify anal-
yses with novel (but fruitful) methodology, a form of outlier
detection. One might even try to develop an automated, per-
sonalized system for organizing and summarizing a body of
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scientific work. At present, such surveys must be conducted
at great cost by human subject-matter experts.

All these features operate on existing data analyses cre-
ated by human scientists. In another frontier of artificial in-
telligence, called computational creativity (Colton, López de
Mantaras, and Stock 2009; Colton and Wiggins 2012), ma-
chines play an active role in the creation of new content. The
platform could surgically modify existing analyses, replac-
ing certain steps with semantically compatible ones (e.g.,
replacing k-means clustering with hierarchical clustering),
or even generate entirely original analyses. The new anal-
yses would be evaluated by some combination of novelty
and quality metrics, where novelty is measured against ex-
isting analyses on the platform. We note that creative appli-
cations require a bidirectional representation: the high-level
dataflow graph must be converted back into executable com-
puter code. This capability, interesting in its own right, is not
currently supported by our system.

Machine representation of data analyses

Briefly, our system automatically extracts a data-flow repre-
sentation of a data analysis, which is interpretable by both
humans and machines.

In this section, we will explain what that sentence means,
but first let’s consider an example. Figure 1 shows the
dataflow graph extracted from an exploratory data analysis
of the Accelerated Cure Project’s survey data on MS pa-
tients. The objective of the analysis is to understand how
the symptoms of MS are distributed across the population of
patients and how they are related to the four clinically rec-
ognized MS disease types. To provide context for Figure 1
we summarize the steps of the analysis. The table of symp-
tom indicator variables is loaded and studied using multi-
ple correspondence analysis (MCA), a variant of principal
components analysis (PCA) suitable for categorical data. K-
means clustering with four clusters is then applied to the top
four MCA factor scores. The resulting clusters are visually
compared with the four disease types (loaded from a sepa-
rate file) in a scatter plot of the top two factor scores. All this
information is contained in the dataflow graph of Figure 1.

We should clarify our terminology. For our purposes, a
data analysis is a computer program, in the form of ei-
ther a source file or an interactive Jupyter notebook (Pérez
and Granger 2007; Ragan-Kelley et al. 2014), that executes
a sequence of data analysis tasks. For example, the pro-
gram might perform a clustering analysis, fit a sparse lin-
ear regression model, or test a statistical null hypothesis. At
present we require that the program be written in Python,
but this limitation is not fundamental; we hope to add sup-
port for R and Julia in the near future.

The representation that we extract is a dataflow graph (or
simply flow graph) summarizing the execution of the analy-
sis. The flow graph is a directed acyclic graph (DAG). Ide-
ally, it will capture the most important steps of the analysis,
such as: reading a data file, fitting a statistical model, mak-
ing predictions, computing error metrics and p-values, sav-
ing transformed data to a new file, and so on. In any realistic
analysis, there will also be some steps to which the system

Figure 1: Example dataflow graph: exploratory data analysis
for the Accelerated Cure Project
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Figure 2: Excerpt of clustering methods in the knowledge base

cannot assign a label. For example, data munging is gener-
ally uninterpretable by our system. The flow graph therefore
consists of a mixture of labeled and unlabeled steps.

The construction of the dataflow graph is automatic in
the sense that it requires no additional annotations by the
data analyst. Put differently, the only input to the system is
the computer program constituting the data analysis. How-
ever, the system does rely on human annotations of another
kind, namely for the underlying analysis tools. For exam-
ple, if the analyst fits a support vector machine (SVM) us-
ing the Python library Scikit-learn (Pedregosa et al. 2011),
then the system’s annotation database must include entries
for the SVM library functions. This approach to functional
annotation leads to a large gain in human efficiency, since li-
brary annotations written by a single individual can be lever-
aged by the whole community. It also supports one of our
most important design goals: to be minimally intrusive to
the workflows of experienced data analysts.

Finally, we clarify the sense in which our dataflow
graph is interpretable. To achieve our goal of producing
a machine-interpretable representation of a data analysis,
it is not enough to attach labels to steps in the analysis;
the system must also understand how these labels are re-
lated to each other. For instance, suppose an analysis in-
volves a logistic regression model, to which the system
assigns the label “logistic regression”. To put this step in
context, the system must understand that logistic regres-
sion is a type of classification model, which is in turn a
type of predictive model. Or, to take another example, sup-
pose two analysts each perform a clustering analysis of the
same dataset, one using k-means clustering and the other
using hierarchical clustering. The system should be able to
recognize two instances of clustering and compare them
accordingly. To enable these features, our system aligns
the dataflow graph with a knowledge base (or ontology)
of data analysis concepts (Brachman and Levesque 2004;
Spivak and Kent 2012). Figure 2 shows a selection of the
clustering methods in our knowledge base. Notice that some
concepts, such as k-means and clusters, also appear in
the dataflow graph of Figure 1.

System architecture

In this section, we briefly explain the organization and op-
eration of our system. An important methodological point is
that our system uses dynamic analysis, not static analysis;
that is, we execute the data analysis code rather than simply

inspecting it. Our system is designed to extract information
that is only available at runtime, such as the column names
of data tables and the parameters of statistical models. At
present our system makes no use of static analysis.

So far we have spoken of “the” dataflow graph, but there
are actually three different dataflow graphs in our system,
which we call the raw flow graph, the annotated flow graph,
and the semantic flow graph. The semantic flow graph is the
final output of our system and is exemplified in Figure 1
above. The other two graphs are intermediate forms.

The architecture of our system, including the relations be-
tween the three dataflow graphs, is shown in Figure 3. A
runtime environment for data analysis, such as the Python
interpreter, supplies a stream of trace events to the system.
Trace events are emitted for each function call and match-
ing function return. The system processes these events in an
online fashion, building up the raw dataflow graph as the
analysis executes. The raw graph is a directed graph whose
vertices represent function calls and whose edges represent
objects passed between them. The “raw” graph is so called
because it is low-level, language-dependent, and generally
uninterpretable. For a typical data analysis encountered in
practice, which involves not just statistical modeling but also
data cleaning and preparation, the raw graph will contain
hundreds or thousands of nodes. This representation is too
large and detailed to be readily interpretable by humans, yet
too unstructured to be interpretable by machines.

The subsequent stages of the pipeline transform the raw
graph into more useful representations. These stages use
auxiliary information from an annotation database for sta-
tistical software and a knowledge base of universal statistical
concepts. First, the annotated graph is constructed from the
raw graph by attaching annotations to functions and objects
that have entries in the annotation database. In addition, sub-
graphs of unannotated vertices are collapsed into single ver-
tices. The latter transformation tends to greatly reduce the
size of the graph, as most function calls are unannotated. In
the final stage, the semantic graph is created from the anno-
tated graph by using information in the annotations to iden-
tify specific language and library constructs with universal
concepts from the knowledge base. Unlike the raw and an-
notated graphs, the semantic flow graph is independent of
the particular language (such as Python or R) and libraries
(such as Scikit-learn or StatsModels) used to implement the
data analysis.

From an architectural point of view, we emphasize that
our system is modular. It is possible for the research com-
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Figure 3: Schematic of dataflow graph pipeline

munity to build on some components of our system while ig-
noring or replacing others. For example, a researcher could
retain our generic system for functional annotation without
adopting our knowledge representation formalism. Conse-
quently, although we have designated the raw and annotated
graphs as “intermediate forms,” we regard them as having
independent interest.

Related work

Our system automatically constructs a dataflow representa-
tion of a data analysis by tracing the flow of objects at run-
time. Thus, there are two essential elements in our work:
(i) describing a data analysis as a flow graph, and (ii) trac-
ing data flow in a computer program. There is considerable
prior art in both of these areas. However, to our knowledge,
we are the first to combine these elements to produce a fully
automated system for summarizing a data analysis. In this
subsection, we review related work in the two areas.

Regarding the first element, we should acknowledge the
obvious fact that many data analysis environments explic-
itly represent analyses as dataflow graphs. Almost always,
these environments are software applications with graphical
interfaces, not programming languages; examples include
open source software like Knime (Berthold et al. 2009) and
Orange (Demšar and Zupan 2013) and commercial offer-
ings like SPSS Modeler and RapidMiner. Graphical environ-
ments for scientific workflow management, such as Galaxy
(Goecks et al. 2010), Kepler (Altintas et al. 2004), and Tav-
erna (Oinn et al. 2004), belong to a related category, as they
often include data analysis functionality. In this paper, we
focus exclusively on the programming language model of
data analysis, in particular the Python language.

To some extent, our goal of recording the steps of a data
analysis is shared by the field of data provenance. The
provenance of a data resource includes its origin and the
process of transformation by which it was derived. Insofar
as the survey (Simmhan, Plale, and Gannon 2005) is repre-
sentative, we would argue that the main difference between
our system and the typical data provenance system is gran-
ularity. In data provenance, the finest granularity of data re-
source is usually files or database records, whereas our sys-
tem operates on a single file and traces arbitrary program-
ming language objects. For example, the StarFlow system
(Angelino, Yamins, and Seltzer 2010) is, like our’s, aimed
at data analysts and built around Python, but operates at the
level of scripts. There are some graphical environments for
data provenance that offer finer granularity, such as VisTrails
(Callahan et al. 2006), but again our work targets text-based

programming languages.
Turning to the second element, the analysis and instru-

mentation of computer programs is a large field of research
unto itself. In the computer science community, dataflow
analysis is usually a means to the end of building bet-
ter compilers, debuggers, and verification tools. A dataflow
analysis can involve static analysis or dynamic analysis (or
both), but the literature emphasizes static analysis because
of its relevance to optimizing compilers (Aho et al. 2006;
Seidl, Wilhelm, and Hack 2012). Static dataflow analyses
are classified as intraprocedural (within a single procedure)
or interprocedural (between procedures across the entire
program). The latter class includes methods for extracting
function call graphs. However, as we have already noted,
our system does not use static analysis.

To our knowledge, the most relevant work in the area
of dynamic analysis is Adrian Lienhard’s dynamic object
flow analysis, described in a dissertation (Lienhard 2008)
and several papers (Lienhard, Ducasse, and Gı̂rba 2009;
Lienhard, Gı̂rba, and Nierstrasz 2008). Like us, he proposes
to track how objects are passed between functions at run-
time. However, his approach differs in both purpose and im-
plementation. His primary goal is to measure object alias-
ing in large object-oriented systems, as an aid to debugging
and reverse engineering. His work does not explicitly ad-
dress our main technical problem, namely to map the (imper-
ative) object-oriented programming model onto the (func-
tional) dataflow programming model. In our work, we offer
only a partial solution to that problem, which is in general
quite challenging.

Conclusion

In this work, we proposed and implemented a novel method
to automatically extract a machine-interpretable representa-
tion of a data analysis. We argued that the scientific and so-
cial good communities could profit greatly by a new kind
of collaborative data science platform, emphasizing open-
ended data analysis and rich, machine-interpretable content.
Our system could serve as a foundational technology for
such a platform.

We see our work as continuous with the quiet but far-
reaching transformation of the scientific process that is cur-
rently underway. The general trend is towards greater open-
ness and interconnectivity, with special emphasis on open-
access research, reproducibility (Munafò et al. 2017), col-
laboration (Sonnenwald 2007), and machine-interpretable
knowledge (Renear and Palmer 2009; Evans and Rzhetsky
2010). In a possible culmination of this trend, human and ar-

57



tificial agents will collaborate on a body of scientific knowl-
edge that is fully open, online, and ontologically integrated.
It is difficult to predict the impact of such a development.
One author suggests that it could be comparable to the birth
of modern science in the Enlightenment era (Nielsen 2012).

We wonder whether a parallel development in the
methodology of social good is required to achieve the most
ambitious Sustainable Development Goals by 2030. Con-
sider the subgoal within Goal 2: “By 2030, end hunger and
ensure access by all people, in particular the poor and peo-
ple in vulnerable situations, including infants, to safe, nu-
tritious and sufficient food all year round” (United Nations
2015). Or within Goal 3: “By 2030, reduce by one third pre-
mature mortality from non-communicable diseases through
prevention and treatment and promote mental health and
well-being” (ibid). To achieve these goals, advances in basic
science must be coupled with deep research on social pol-
icy. Policymakers and philanthropists must absorb this di-
verse knowledge and translate it into effective action. The
same values driving the transformation of basic science—
openness and interconnectivity—could initiate a paradigm
shift for social good, fundamentally changing the way that
stakeholders collaborate and share knowledge. We believe
that the AI community has a crucial role to play in this de-
velopment. We hope that the community will share our en-
thusiasm and work together to realize the vision of machine-
assisted social good.
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