Knowledge Representation in
Bicategories of Relations

Evan Patterson
Department of Statistics, Stanford University

Abstract

We introduce the relational ontology log, or relational olog, a knowledge repre-
sentation system based on the category of sets and relations. It is inspired by
Spivak and Kent’s olog, a recent categorical framework for knowledge representation.
Relational ologs interpolate between ologs and description logic, the dominant for-
malism for knowledge representation today. In this paper, we investigate relational
ologs both for their own sake and to gain insight into the relationship between the
algebraic and logical approaches to knowledge representation. On a practical level,
we show by example that relational ologs have a friendly and intuitive—yet fully
precise—graphical syntax, derived from the string diagrams of monoidal categories.
We explain several other useful features of relational ologs not possessed by most
description logics, such as a type system and a rich, flexible notion of instance data.
In a more theoretical vein, we draw on categorical logic to show how relational
ologs can be translated to and from logical theories in a fragment of first-order logic.
Although we make extensive use of categorical language, this paper is designed to
be self-contained and has considerable expository content. The only prerequisites
are knowledge of first-order logic and the rudiments of category theory.

1. Introduction

The representation of human knowledge in computable form is among the oldest and
most fundamental problems of artificial intelligence. Several recent trends are stimulating
continued research in the field of knowledge representation (KR). The birth of the Semantic
Web [BHLO1] in the early 2000s has led to new technical standards and motivated new
machine learning techniques to automatically extract knowledge from unstructured text
[Nic+16]. In the scientific community, successful knowledge bases like the Gene Ontology
[Ash+00] have inspired a proliferation of ontologies across biology and biomedicine
[Noy+09]. This development belongs to a general trend towards greater openness and
interconnectivity in science. Optimists dream of a future science in which all scientific
knowledge is open, online, and interpretable by machines |[Niel2].

Description logic is the dominant formalism for knowledge representation today. In
particular, the language OWL (Web Ontology Language), a W3C standard underlying
the Semantic Web, is a description logic [Gra+08]. Description logics are logical calculi

designed specifically for knowledge representation. They lie somewhere between propo-
sitional logic and first-order predicate logic, striking a trade-off between computational
tractability and expressivity.

In parallel with the invention of description logic and the Semantic Web, a mostly disjoint
community of mathematicians, physicists, and computer scientists have discovered that
category theory, popularly known for its abstruseness, is useful not just for describing
abstract mathematical structures, but for modeling such diverse real-world phenomena
as databases, programming languages, electrical circuits, and quantum mechanics [Spil2;
L.S88; BF15; /AC04]. The ethos of this research program is that category theory can serve
as a general-purpose modeling language for science and engineering. Having internalized
this perspective, it is but a short step to contemplate a general-purpose knowledge
representation system based on category theory. In this spirit, Spivak and Kent have
recently introduced the ontology log (or olog), a simple and elegant categorical framework
for knowledge representation [SK12].

An objective of this paper is to understand the relationship between the logical and
algebraic approaches to knowledge representation. To that end, we introduce a third
knowledge representation formalism that interpolates between description logic and
ontology logs. We call it the relational ontology log, or relational olog. Spivak and Kent’s
ologs, which we sometimes call functional ologs to avoid confusion, are based on Set, the
archetypal category of sets and functions. Relational ologs are based on Rel, the category
of sets and relations. That may sound a small difference, since functions and relations are
often interchangeable, but it leads to very different modes of expression. Functional ologs
achieve their expressivity through categorical limits and colimits (products, pullbacks,
pushforwards, etc.), while relational ologs rely mainly on relational algebra (intersections,
unions, etc.). In this sense, relational ologs are actually closer to description logic than to
functional ologs.

Practitioners of description logic will find in relational ologs several useful features
not possessed by most existing KR systems, including OWL. Some of these features are
awkward to handle in a purely logical system; all emerge automatically from the categorical
framework. First, functors allow instance data to be associated with an ontology in a
mathematically precise way. Instance data can be interpreted as a relational or graph
database or can take more exotic forms. Second, relational ologs are by default typed. We
argue that types, if used judiciously, can mitigate the maintainability challenges posed
by the open world semantics of description logic. Finally, relational ologs have a friendly
and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of
monoidal categories. We expect that this graphical language will appeal to technical and
non-technical users alike.

How to read this paper We have tried to write a paper that is accessible to a diverse
audience. All Remarks and Appendices are technical and can be skipped on a first reading.
The mathematical prerequisites are limited as follows. We assume the reader is familiar
with the syntax and semantics of first-order logic. No prior knowledge of description
logic is required. We expect the reader to know the “big three” concepts of category
theory—category, functor, and natural transformation—but we do not assume knowledge
of categorical logic or monoidal categories and their graphical languages. References for
further reading are provided where appropriate.

Readers who prefer to begin with an extended example may proceed immediately to
Section 0.1} referring to Section [3|as needed to understand the graphical notation. The core
of the paper, explaining the categorical-relational approach to knowledge representation,
is Sections [3|to [7] The other sections develop extensions of our methodology and make
connections to other branches of mathematics and knowledge representation.

Organization of paper In the next section, we review description logic as a computa-
tionally tractable subset of first-order logic and describe several widely used description
logics. In Section [3, we introduce Rel, the category of sets and relations, and use it to
illustrate the general concepts of monoidal categories and their graphical languages. We
also make initial contact with the basic notions of description logic. Motivated by Rel,
in Section [4] we present the bicategory of relations, a categorical abstraction of relational
algebra invented by Carboni and Walters. Section |5|defines a relational olog to be a finitely
presented bicategory of relations and illustrates with an extended example. Sections [0]
and [7| discuss the implications of instance data and types for knowledge representation. In
Section |8 we take a sojourn into categorical logic, proving that regular logic is the internal
language of bicategories of relations. This result establishes a formal connection between
relational ologs and a fragment of typed first-order logic. In Section [9 we introduce the
distributive relational olog, an extension of the relational olog with high expressivity. In the
final Section [10] we comment on the philosophy of categorical knowledge representation
and suggest directions for future research. The two Appendices bring mathematical rigor
to the informal discussion of categorical logic in the main text.

2. Description logic

Early knowledge representation systems, based on semantic networks or frames, often
lacked a formal semantics. The intended meanings of the elements of such systems were
defined only implicitly or operationally by the inference algorithms that manipulated
them. As a result, researchers found it difficult to reason generally about these systems,
independent of any specific implementation. Arguments were advanced that knowledge
representation should be grounded in formal logic [Woo75|. First-order logic, ever the
“default” logical system, seems like a natural place to start.

Description logic (DL) is motivated by the deficiencies of first-order logic as a foundation
for knowledge representation. Chief among these is computational intractability: first-
order logic, while quite expressive, is undecidable. The basic description logics are subsets
of first-order logic designed to be decidable (although not always in polynomial time). The
tradeoff between expressivity and tractability was emphasized by the earliest papers on
description logic [BL84]. Another point, less frequently mentioned, is that description logic
is simpler and more user friendly than first-order logic. As we will see, its syntax suppresses
variables, both bound and free, and imposes strict limits on the logical sentences that can
be formed. Given that most users of knowledge representation systems are domain experts
in scientific or business fields, not professional mathematicians, it is important that KR
formalisms be easily interpretable and maintainable. A knowledge base consisting of a
collection of arbitrary first-order sentences will probably not meet this requirement.

2.1. Review of description logic

In this section, we briskly review description logic. General introductions to description
logic include the survey [KSH12| and the textbook chapter [BL04, Ch. 9] by Brachman
and Levesque. A comprehensive reference is the Description Logic Handbook |[Baa+07].
For the perspectives of the bioinformatics and Semantic Web communities, see [RB11]
and [HKRO09], respectively.

Description logic uses a special nomenclature to specify the features possessed by a given
system. The base system, from which most others are derived, is called AL (for Attributive
Concept Language). Given a collection of atomic concepts, denoted A, and atomic roles,
denoted R or S, the concept descriptions of AL are well-formed terms of the grammar:

C,D == A (atomic concept)
T | (universal concept)
1| (bottom concept)
—A (atomic negation)
cnb | (intersection)
VR.C | (value restriction)
dR.T (limited existential quantification).

Note that negating arbitrary concepts is not allowed in AL. Concepts and roles are
interpreted as unary and binary predicates in first-order logic:

(=A)(x) it —A(x)
(CND)(x) ifft C(z)A D(x)
(VR.C)(x) ifft Vy.(R(z,y) = C(y))
(3R.T)(x) ifft Jy.R(x,y)

A terminological box or TBox is a collection of terminological axioms of form
ccbhD or C=D,
interpreted as the first-order sentences
Va.(C(x) = D(z)) or Vz.(C(x) < D(y)).
An assertional box or ABox is a collection of assertional azioms of form
C(a) or R(a,b),

where a,b are names of individuals. A knowledge base or ontology in description logic
consists of a TBox and an ABox. Given the above translations into first-order logic, there
is an obvious notion of an interpretation or model of a knowledge base. Thus description
logic inherits a model-theoretic semantics from first-order logic.

More expressive description logics are obtained by adjoining to AL additional concept
and role constructors, identified by script letters like C and U. The literature describes
countless such extensions; Table [1] lists the most important ones. As a warning, a few
identifiers (like F and R) are not used consistently across the literature.

ID Name DL Syntax FOL Interpretation
C Concept negation -C -C(z)
U Concept union cubD C(z)V D(x)
£ Full existential quantification JR.C Jy.(R(z,y) A C(y))
H Role axioms RCS Ve, y.(R(x,y) = S(z,v))
R=S Vo, y.(R(z,y) <> S(x,y))
O Nominals (concept literals) {ai,...,a,} {ai,...,a,}
Z Inverse roles R~ R (z,y) <> R(y,x)
F Functional role <1R see below
N Number restriction >nR see below
=nR
<nR
Q Qualified number restriction >nR.C see below
=nR.C
<nR.C
N/A Role intersection RS R(x,y) N S(x,y)
N/A Role union RUS R(z,y) Vv S(x,y)
N/A Role composition RoS Jy.R(x,y) A S(y, 2)
R Regular role inclusion Rio---oR,CS see below
(D) Concrete domains (data types) varies varies

Table 1: Summary of AL language extensions

Several DL constructs in Table |1 deserve elaboration. The qualified number restriction
(Q) term > nR.C (respectively < nR.C') denotes the class of elements related by R to at
least n (respectively at most n) elements of class C. In first-order logic,

(> nR.C)(x) iff Fyr, .., Yn (A (R y) NCly)) A N\ v # y;)

1<i<n 1<i<j<n
(<nR.C)(x) iff YYLy oo Yngl (/\ (R(z,y;) AN Cl(y;)) — \/ Y = y;))
1<i<n 1<i<j<n+1

Number restriction (N) and functional roles (F) are special cases of qualified number
restriction. Concrete domains ((D)) refer to data types, such as natural numbers or real
numbers, and operations on them, such as addition and multiplication. We return to the
topic of data types in Section [7]

Most descriptions logics do not allow arbitrary intersection, union, or composition of roles.
However, composition-based regular role inclusion (R) is widely used. System R allows
axioms of form Ry o---0o R, C S, where Ry, ..., R, are atomic roles, provided there are
no cycles between axioms. This acyclicity requirement, which we will not make precise,
leads to favorable computational properties. Note that R is sometimes taken to include

additional, ad hoc features like reflexivity, “local” reflexivity, irreflexivity, and disjoint
roles [HKS05; HKS06].

A few description logics are privileged in theory or practice. The minimal language AL is
too inexpressive for most applications. The central language in the theory of description

logic is ALC. 1t is logically equivalent to ALUE, although the shorter name ALC is
preferred. In a break with the standard nomenclature, the language S is ALC plus
transitive roles. The Web Ontology Languages are derived from system S. For example,
OWL 1 Lite corresponds to SHZF (D), OWL 1 DL to SHZON (D), and OWL 2 DL to
SROIQ(D).

2.2. Structure of description logic

To put the subsequent developments in context, we make a few observations about
the structure of description logic. Since description logic is not a single logical system,
but rather a large federation of systems, it is difficult to make broad generalizations.
Nevertheless, some general themes can be discerned.

An obvious syntactic difference between description logic and first-order logic is that the
former is point-free while the latter is not. By “point-free” we mean that the concept and
role constructors of description logic suppress all variables, free and bound. First-order
logics without variables do exist—Tarksi, for example, studied such systems in his last
major work [TG87|—but, outside of description logic, they are rare in research and in
practice. In this respect, relational ologs are like description logic: both the textual and
graphical syntaxes of relational ologs are point-free.

Description logics characteristically impose strict limitations on how concepts and roles
may be combined. Thus, not all first-order sentences are expressible in description logic.
The same is true of relational ologs: we shall see that when relational ologs are interpreted
as first-order theories (Section , not all first-order sentences are expressible.

Moreover, there are structural similarities between the first-order sentences that are
expressible in the two formalisms. In description logic, terminological axioms C' & D and
R C S typically translate into first-order sentences of form

V-V, (e —),

where ¢ and 1 are formulas containing only the connectives and quantifiers A,V, T, 1, 3.
(Depending on the language, exceptions can arise from value restrictions VR.C' and number
restrictions like < nR.C. However, these constructors are acceptable in axioms of form
VR.C C T or YR.C C 1. Concept negations =C' also present exceptions.) The logical
system just described is called coherent logic. The weaker system of reqular logic is
obtained when ¢ and v are further restricted to the connectives and quantifiers A, T, 3.
We shall see that regular logic and coherent logic are closely connected to relational ologs

(Sections [§ and [9).

3. The category of relations

In this section we introduce Rel, the category of sets and relations. Although the reader
is doubtless familiar with sets and relations, we think it helpful to start the development
in this very concrete setting. We will introduce monoidal categories and their graphical
languages by equipping Rel with various categorical structures, such as a monoidal
product, diagonals and codiagonals, and a dagger operator. These structures on Rel

motivate the more abstract “categories of relations” needed for knowledge representation
(Section [4]). We will also make initial contact with description logic.

Our presentation draws on the physics-oriented survey by Coecke and Paquette [CP10],
where Rel is viewed as a “quantum-like” category, in contrast to the “classical-like”
category Set. The excellent surveys [BS10] and [Sell0] also provide more detail about
monoidal categories and their applications and graphical languages. General introductions
to category theory, in order of increasing sophistication, are |LS09; |Spil4; Awol0; Leil4}
Riel6; [Mac9g].

Definition. The category of sets and relations, denoted by Rel, is the category whose
objects are sets and whose morphisms R : X — Y are subsets R C X xY. The composition
of R: X =Y and S:Y — Z, written R-S: X — Z or RS: X — Z, is given by

xRSz ift JyeY xRy AyRz,

where xRy means that (z,y) € R. For any set X, the identity morphism 1x is the
diagonal relation:
z(lx) iff z=2a

The notion of composition of relations is natural and important. Notice that when R
and S are (graphs of) functions, RS is the usual composition of functions. Also, the
identity morphism is the usual identity function. As a result, Set, the category of sets
and functions, is a subcategory of Rel.

Remark. As illustrated by the definition, we compose morphisms in left-to-right or
“diagrammatic” order. We make this choice for consistency with the graphical syntax,
which is read from left to right. It is also consistent with the notation zRy for (z,y) € R.

Unlike Set, the category Rel is a special kind of a 2-category.

Definition. A category C is a locally posetal 2-category if between any two morphisms
f,g: A — B with common domain and codomain, there exists at most one 2-morphism,
written

f
Y Py
A—9—- B ~ A || B,
NS 5
h
and horizontal composition,
Lo s
M PR
A | B | C s A] C,
7

such that each hom-set C(A, B) is a poset (partially ordered set) under the relation =-.

In Rel, we stipulate that R = S if there is a set containment R C S. Vertical composition
simply says that set containment is transitive. More interestingly, horizontal composition
says that containment is preserved by composition of relations: if R C S and T C U,
then R-T C S -U. Furthermore, the hom-sets are posets because R C R and also

= S whenever R C S and S C R. Thus Rel is a locally posetal 2-category. In
this context, the symbol = has a happy double meaning: we can read = as a generic
2-morphism or as logical implication. In the terminology of description logic, 2-morphisms
are subsumptions.

3.1. Monoidal category

We will make Rel into a monoidal category by equipping it with the Cartesian product.
We first state the general definition of a monoidal category.

Definition. A (strict) monoidal category (C, ®, I) is a category € together with a functor
® : € x C — €, called the monoidal product, and an object I, called the monoidal unit,
such that (®, I') behaves like a monoid on the objects and morphisms of €, in the following
sense. For objects A, B, C, we have

AR (BR®C)=(A®B)®C, ARQI =1 A=1,
and for morphisms f, g, h, we have

f®(g®h)=(f®g)®h, feli=1;,f="f

More explicitly, functorality of the monoidal product ® means that for any objects A, B,
14 ®1p = 1lagn
and for any morphisms f: A—- B, g: B—C,h: D — FE k: FE — F,

(frg9@h-k)=(f®h) (k).

Let us immediately introduce the graphical language of string diagrams that is associated
with any monoidal category. In this language, objects are represented by wires and
morphisms are represented by boxes with incoming and outgoing wires. A generic
morphism f : A — B is represented as

A@B
L

The composite fg: A—Cof f:A— Bandg: B— Cis

A@B@c
S

and the monoidal product f® g: AQ B—-C®Dof f:A— Bandg:C — D is

A?B
__—
o

¢ (LD
_—/

Identity morphisms are represented specially as a bare wire:

oo A

Each time we introduce a new monoidal structure, we will augment the graphical language
accordingly.

String diagrams are among the most beautiful aspects of the theory of monoidal categories.
Unlike the diagrams and flowcharts found throughout the engineering literature, which
have no formal meaning, string diagrams provide a formal calculus for reasoning in
monoidal categories. More precisely, coherence theorems guarantee that string diagrams
constitute a sound and complete calculus for equational reasoning with morphisms in
a monoidal category. Coherence theorems are emphasized by Selinger’s comprehensive
survey [Sell0]. All string diagrams in this paper are drawn by the author’s (highly
experimental) library for computational category theory [Pat17].

The Cartesian product makes Rel into a monoidal category in the most straightforward
way. (Later we will see that it is not the only interesting monoidal product on Rel.) On
objects, define

XY =XxY={(r,y):2€X,yeY}

and given morphisms R: X - Y and S:Z — W define RQRS: X ®Z —Y W by
(,2)(R® 5)(y, w) iff xRy A zSw.

The monoidal unit is any singleton set, which we write as I = {x}.

Remark. Technically, Rel is not a strict monoidal category, as defined above, because the
Cartesian product is not strictly associative: X x (Y x Z) # (X xY') x Z. Of course, there
is a natural isomorphism X X (Y x Z) = (X x Y) x Z, mapping (z, (y, 2)) to ((z,y), 2),
that allows us to identify these two sets. Similarly, X x I # X but there is a natural
isomorphism X x I = X that identifies (x,*) with . Such considerations lead to the
general definition of a monoidal category, where strict associativity and units are replaced
with associator and unitor natural isomorphisms, subject to some coherence conditions.
However, the coherence theorem for monoidal categories [Mac63] ensures that a general
monoidal category is monoidally equivalent to some strict monoidal category, called its
strictification. As a result, we adopt the common practice of suppressing associators and
unitors, effectively replacing every monoidal category by its strictification. Note that
the graphical language implicitly performs this strictification. Incidentally, the abstract
categories of relations we construct in Section |8 will actually be strict monoidal categories.

As in most monoidal categories in encountered in practice, in Rel the order of inputs and
outputs can be freely exchanged.

Definition. A monoidal category (C, ®, I) is a symmetric monoidal category if there is a
natural family of isomorphisms

oap:A®B = B® A, A, B €,

called braidings, satisfying O’Z}B = 0BA.

In the graphical language, braidings are represented by crossed wires:

The braidings in Rel are defined by

/

() oxy (¥, 2') iff x=a"Ay=y.

In Rel, unlike in Set, there is a fundamental duality between inputs and outputs under
which any input can be turned into an output and vice versa. This duality is captured
abstractly by the following definition.

Definition. A symmetric monoidal category (C,®,1) is a compact closed category if
for every object A € €, there is an object A*, the dual of A, and a pair of morphisms
a1 —A"® Aand €4 : A® A* — I, the unit and counit respectively, which satisfy the
triangle or zig-zag identities:

A A9 A @ A Ar A8l Ao A @ A
o l€A®1A I llA* Rep -
A A*

The prototypical example of a compact closed category is (Vecty, ®), the category of
finite-dimensional vector spaces (over a fixed field k) and linear maps, equipped with
the tensor product. The monoidal unit is I = C, the one-dimensional vector space. As
expected, the dual A* of a vector space A is the space of linear maps A — C. The unit
na: 1 — A*® A maps ¢ to cl4 and the counit €4 : A ® A* — [is the trace operator.

Rel is a self-dual compact closed category. That is, every object is its own dual (X* = X).
The unit nx : I - X ® X and counit ex : X ® X — I are defined by

(x)nx (x,2) iff =22 iff (x,2') ex ().

In the graphical language, these morphisms are represented as “bent wires”:

10

The zig-zag identities assert that “zig-zags can be straightened out”:

Remark. String diagrams for compact closed categories typically include arrowheads on

the wires to distinguish objects A from their duals A—>, which are drawn as reversed
A : . :

arrows <—. Because we work in self-dual categories, we can safely omit the arrowheads.

We have amassed enough structure to specify relations of arbitrary arity. Relations
B : I — I whose domain and codomain are the monoidal unit constitute the degenerate
case of arity zero. Since I = {x} is the singleton set, the hom-set Rel(I, I) has only two
members: the identity relation 1; = {(*,*)} and the empty relation (). Defining T :=1;
and L := (), we interpret relations B : I — I as booleans.

Next, we have unary and binary relations. A unary relation C': X — [is called a class or
concept in the description logic literature. Its elements have the form (x, %), where x € X.
In the graphical calculus, wires of type I are not drawn at all, so a concept C': X — [is

represented as
X

A binary relation R : X — Y, or role in description logic jargon, is depicted as

X@Y

as we have seen.

Finally, we can easily express higher-order relations. A relation of arity n is a morphism of
form R: X;®---® X,, — I. For instance, here is a ternary relation R : X QY ® Z — I:

X [

Y s

_Z |
_—

Apparently, there are two conventions for representing a binary relation: as a morphism
R: X — Y or amorphism R: X ® Y — I. By bending wires, we can pass freely between
the two representations, via the transformations

11

and

which, by the zig-zag identities, are mutually inverse. Most description logics do not
support relations of arity greater than two, in part because the point-free textual syntax
becomes quite awkward [Baa+07|, §5.7]. The graphical language of monoidal categories
enables graceful and intuitive composition even when relations have multiple inputs and
outputs.

3.2. Dagger category

Every relation R : X — Y in Rel has an opposite relation R' : Y — X, also known as
the converse or inverse relation, defined by

yR'x ift rRy.
This structure is axiomatized by the following definition.

Definition. A dagger category is a category C equipped with a contravariant functor
(—)T: @P — C that is the identity on objects and is involutive, i.e., ((—)") = 1.

More explicitly, a dagger category is a category € such that to every morphism f: A — B
there corresponds a morphism ff: B — A, and the correspondence satisfies

147 =1y, (fo)t =47, and (M = f.

When € is a monoidal category, one typically asks that the dagger respect the monoidal
structure.

Definition. A symmetric monoidal category € is a dagger symmetric monoidal category
if € is a dagger category and (—)' is a symmetric monoidal functor, i.e.,

(feg=fleg and ol z=0p4=04%

A compact closed category € is a dagger compact category if € is a dagger symmetric
monoidal category and for each object A € €, there is a commutative diagram

o
I —25 A® A*

(oa .
N l 447

A'® A

12

Remark. Dagger compact categories have been introduced and studied in the context of
quantum computing [Sel07]. The prototypical example is Hilb, the category of finite-
dimensional Hilbert spaces and linear maps, equipped with the tensor product. Here fT
is the usual adjoint (or Hermitian conjugate) of the linear map f. For this reason, in a
general dagger category €, the morphism fT is often called the adjoint of f. To avoid
confusion with the 2-categorical notion of adjoint, invoked in Section [we do not use
this terminology.

In the graphical language, fT is represented by taking the “mirror image” of f:
B @ A _ _B @ A

Equivalently, given any morphism f drawn as a string diagram—which we read from left
to right, as usual—we get fT by reading the same diagram from right to left.

With the dagger operation defined above, Rel is a dagger compact category. However,
unlike most dagger compact categories, Rel is self-dual. Thus there is potentially a second
way to transform a morphism X — Y into a morphism Y — X: bend both the input
and the output wires. These two operations are actually the same, which we can express
graphically as:

This equation is a generalization of the zig-zag identity: if we imagine “straightening
out” the right-hand side by pulling on the ends of the input and output wires, we obtain
the left-hand side. Mathematically speaking, the dagger structure on Rel is superfluous
since it can be reduced to the compact closed structure. We choose to make the dagger
structure explicit because inverse relations occur frequently in practice and the associated
graphical language is succinct and intuitive.

3.3. Diagonals and codiagonals

In our final topic of this section, we show that the category of relations has operations
for “copying” and “deleting” data and, dually, for “merging” and “creating” data. Using
these operations, we can express intersections of classes and relations and, more generally,
logical operations involving conjunction. We also obtain an important characterization of
the “functional relations”, or maps, in Rel.

The “copying” and “merging” operations are defined by internal comonoids and monoids,
respectively, in Rel. We recall the general definition of a (co)monoid in a monoidal
category.

13

Definition. Let (€, ®,) be a monoidal category. An internal monoid in € is an object
M € € together with a multiplication morphism p: M & M — M and a unit morphism
n: I — M such that

MMM M Mo M ToM M v M &8 peT

o1 Aj; \]\J; /

MM ———

Dually, an internal comonoid in € is an internal monoid in C°?. In concrete terms, an
internal comonoid is an object C' together with a comultiplication morphism ¢ : C' — C®C'
and a counit morphism e : C'— I such that

c —2—CoC C
(ﬂ l&@lc /lé\
C®01*>C'®C®C [®C<—C’®C*>C®[
c®d 1c®e 1c

If C is a symmetric monoidal category, we say that an internal monoid (M, pu,n) is
commutative if
OM,M

MM —— MM

xl“

M

Dually, an internal comonoid (C, §, €) is cocommutative if

C-2,0C

N Jree-

ceC

Note that an internal monoid in Set is just a monoid in the usual sense, i.e., a set M
equipped an associative binary operation p and an identity element 7. Likewise, an
internal commutative monoid in Set is just a commutative monoid.

We define a family of internal (co)monoids in Rel as follows. For each set X, define

rAx (2, 2") it z=2'Nz=2a",

and define Ox : X — I by Ox = {(z,%) : @ € X} (so that z(0x)* holds for every = € X).
It is easily verified that (X, Ax, 0x) is a cocommutative comonoid in Rel. By taking the
opposite relations

Vy=AL: X®X 5 X and Ox:=0L:1-X,

we also obtain for each set X a commutative monoid (X, Vx,Ox) in Rel. We think of
Ax as “copying” or “duplicating,” Vx as “merging,” O x as “deleting” or “erasing,” and
[(x as “creating.” These interpretations will be manifest from the graphical language,
to be demonstrated shortly. However, for the graphical language to be consistent, the
family of (co)monoids must satisfy certain coherence azxioms, which ensure that they
interact properly with the monoidal product. These axioms are captured by the following
definition.

14

Definition (|Sel99]). A monoidal category with diagonals is a symmetric monoidal category
C together with a family of morphisms Ay : A — A® A and {4 : A — I, not necessarily
natural in objects A, such that each triple (A, A4, 04) is a cocommutative comonoid in €
and obeys the coherence axioms

Or =1y, Ouagp =04 ® Op, Asgp = (A4 ®@Ap)(l4®0ap®1p).

Dually, a monoidal category with codiagonals is a symmetric monoidal category € together
with a family of morphisms V4 : A® A — A and s : I — A such that each triple
(A, V4,0,4) is commutative monoid in € and obeys the coherence axioms

O =1y, Oagp =Ua ® Op, Vags =(1a®opa®15)(Va® Vp).

Remark. When the monoidal category C is, like Rel, not strict, we also need coherence
axioms asserting that A; and V; are the unitors realizing the isomorphism I = I ® I.

The graphical language of a monoidal category with diagonals is

Similarly, the graphical language of a monoidal category with codiagonals is

VA:%’ DA:oi.

By the coherence axioms, we can express the diagonal morphisms for a product A ® B in
the graphical language as

A
B —4—0
Asgp = : Qagp =
_B
B

Of course, there is a dual picture for the codiagonal morphisms.

Under the above definitions, Rel is a monoidal category with diagonals and codiagonals.
A quick calculation shows that the intersection R NS of two relations R, S : X — Y with
common domain X and codomain Y is Ax(R ® S)Vy or, in graphical language,

15

As a special case, the intersection of two classes C, D : X — [is

We can also express many of the basic concept constructors in description logic. For any
relation R : X — Y and class C': Y — I, the “limited” existential quantification IR.T is

the class
()

=

and the “full” existential quantification 4R.C is the class

29

In contrast to description logic, we can retain access to the domain or codomain of
the relation R while restricting its values. For instance, given classes C': X — [and
D :Y — I, the relation

@y

consists of all pairs (z,y) € X x Y satisfying xRy A xCx A yDx. The value restriction
concept constructor VR.C' cannot be expressed as a single morphism, but we can achieve
the same effect by declaring a subsumption of two different morphisms:

X[VY Y
0 R — C
J

This 2-morphism asserts that Vo € X.Vy € Y.(xRy — yCx).

Finally, we can express a typed variant of the “universal role” in description logic. The
local maximum
. X Y
TX,Y e —O o—
is the (unique) maximum element of the poset Rel(X,Y’), namely X x Y. It generalizes
the top element T = T ; = 1; of the booleans Rel([, I).

Maps The diagonal structure on Rel leads to an abstract characterization of the relations
that are functions, i.e., the relations R : X — Y with the property that for every x € X,
there exists a unique y € Y such that zRy. This matter is closely connected to the
naturality, or lack thereof, of the diagonal in Rel. In general, a diagonal in a symmetric

16

monoidal category € is natural if for every morphism f : A — B, we have fAp = A (f®f)
and fOp = O, or graphically

A@B<%

A@BO_ A

and

The first equation has the interpretation that applying f, then copying the output is the
same as copying the input, then applying f to both copies; the second that applying f,
then deleting the output is the same as deleting the input. When both equations hold for
a morphism f, we say that f is a comonoid homomorphism. In a general category, we
expect the equations to hold for morphisms that “behave like functions.”

The diagonal in Rel is not natural because not all relations are functions. However, for
any relation R : X — Y, there are 2-morphisms

We say that every morphism in Rel is a lax comonoid homomorphism. Explicitly, the
2-morphisms are the inclusions

{(z,y,y) : wRy} € {(z,y,9) : xRy N xRy}
{(z,*): Jy € YaRy} C {(x,%) : z € X}.

When the first inclusion is an equality, R is a partial function; when the second is an
equality, R is total; when both are equalities, R is a function or a map. In other words,
the comonoid homomorphisms in Rel are exactly the relations that are functions.

Of course, for every concept about the diagonal, there is a dual concept about the
codiagonal, whose details we omit. In Rel, we obtain abstract characterizations of the
injective, surjective, and bijective relations. By combining the diagonal and codiagonal
structures, we can characterize the injective functions, surjective functions, etc.

Interactions between structures To conclude this section, we consider how the diagonals
and codiagonals of Rel interact with each other and with the previous structures. In fact,
the self-dual compact closed structure is reducible to the (co)diagonals. The unit and
counit morphisms are given by

X X

o= LD

17

We have seen that the dagger is, in turn, reducible to the compact closed structure.
Like the dagger operation, bending arrows is useful enough to merit its own textual and
graphical syntax.

The internal monoids and comonoids in Rel combine to form internal Frobenius algebras
(sometimes called Frobenius monoids) [Koc04]. That is, for each object X, there is a
monoid (X, Vy,Ox) and a comonoid (X, Ax, Ox) satisfying the Frobenius equations

(Ix®Ax)(Vx®1x) =VxAx = (Ax ® 1x)(1x ® Vx)

or, graphically,

T

The monoid and comonoids are also special, meaning that AxVyx = 1x or
—a _ o—— = —

Finally, by definition, we have Vx = ATX and [, = <>Tx. These properties can be
summarized by saying that (X, Ax, Ox, Vx,Ox) is a special T-Frobenius monoid [BE15].

4. Abstract categories of relations

The category Rel of sets and relations cannot stand alone as a formalism for knowledge
representation. A knowledge representation system must be implementable on a computer,
which requires that each knowledge base admit a finite description. Yet Rel, far from
being a finitary object, has as objects every possible set and as morphisms every possible
relation! Moreover, there is no formal system for specifying equations or subsumptions that
should hold between relations. To enable a finite description of categories that “behave
like” the category of sets and relations, we must axiomatize the salient structures of Rel.
The previous section provides some clues about how to achieve this axiomatization.

In fact, there are two different notions of an “abstract” category of relations in the category
theory literature. The best known is Freyd’s allegory, popularized by Freyd and Scedrov
[FS90] and utilized in Johnstone’s treatise on topos theory |[Joh02]. There have been a few
efforts to apply allegories to real-world phenomena, e.g., in circuit design [BH94; BJ94],
logic programming |[AL12|, and database modeling [ZMS13|. Allegories take intersections
and the dagger (called “reciprocation”) as primitive, characterizing the former by axioms
like reflexivity, commutativity, and, most distinctively, the modular law

RSNT C (RNTSHS,

18

where R C S is, by definition, equivalent to R NS = R. (The reader can check that this
rather strange law does hold in Rel.) The second notion is the bicategory of relations,
introduced by Carboni and Walters |[CW87; |Car+08]. In bicategories of relations, the
monoidal structures are primitive, while intersections and the dagger are derived concepts.
The two notions are ostensibly quite different, but it can be shown that the categories
of unitary pretabular allegories and of bicategories of relations are equivalent, in fact
isomorphic |[KN94; Lawl5|. Thus, the choice of axiomatization is mostly a matter of
preference.

In this paper, we shall take bicategories of relations as our preferred notion of an “abstract”
category of relations. An advantage of this choice is that the graphical language of
monoidal categories is immediately available.

Definition ([CWS8T7]). A bicategory of relations is a locally posetal 2-category B that is
also a symmetric monoidal category (B, ®, I) with diagonals (X, Ax, Ox)xes, such that
e every morphism R : X — Y is a lax comonoid homomorphism,

R-Ay = Ax(R®R), R -0y = Ox;

e the duplication morphisms Ay and deletion morphisms {x have right adjoints
Vx =A% and Oy := O%;

e the pairs of morphisms (Ax, V) obey the Frobenius equations.

We denote by BiRel the category of (small) bicategories of relations and structure-
preserving functors.

Remark. Our definition differs from Carboni and Walter’s definition in one respect. They
ask not for diagonals but only for internal cocommutative comonoids, subject to the
requirement that they are the unique cocommutative comonoids with right adjoints.
However, it appears that the only use of this uniqueness axiom is to derive the coherence
axioms [CW87, Remark 1.3 (ii)]. We think it simpler to just assert the coherence axioms
to begin with. By omitting the uniqueness axiom, we ensure that the theory of bicategories
of relations is essentially algebraic (see below).

Every structure invoked in the definition has been introduced in Section [3| with the
exception of adjoints. In this paper we use “adjoint” in the sense of 2-categories |Lacl0].
Thus, in a locally posetal 2-category €, a morphism f : A — B is left adjointtog: B — A
(and g is right adjoint to f), written f - g, if

1y = fg and gf = 1p.

If a morphism f has a right adjoint g, then it is unique, for if ¢’ is another right adjoint,
then ¢’ = ¢’ fg = ¢ and, by symmetry, g = ¢, so that g = ¢’. Similarly, left adjoints are
unique when they exist. In Rel, a relation R : X — Y has a right adjoint R* : ¥ — X
if and only if R is a function, in which case R* = R'. Together with the discussion in
Section [3] this proves that Rel is a bicategory of relations. We shall meet other interesting
bicategories of relations in Sections [6] and [§

Carboni and Walters derive from the axioms of a bicategory of relations all the categorical
structures discussed in Section [3] The situation is perfectly analogous to that of Rel. For
the reader’s convenience, we summarize the results in Table [2| using the textual syntax
for brevity.

19

Structure Name Notation and definition

category composition R-S
monoidal category product R®S
braiding oxXy
diagonal copy Ax
delete Ox
codiagonal merge Vx =A% = A}
create Oy :=0% = TX
compact closed unit nx = UOx - Ax
counit ex :=Vx- -Ox
dagger dagger Ri:i=(nx®1ly)(lx ® R® 1y)(1x ®€y)
logical intersection RNS:=Ax(R®S)Vy
true T:=¢0;-0=1;
local maximum Txy:=0x Uy

Table 2: Summary of morphisms in a bicategory of relations

The characterization of maps in Rel also generalizes to an arbitrary bicategory of relations.
A morphism R : X — Y in a bicategory of relations B is a map if it has a right adjoint
R* 'Y — X. Equivalent conditions are that R is a comonoid homomorphism or that R
is left adjoint to RT [CW87, Lemma 2.5]. The collection of maps in B is closed under
composition and monoidal products and hence forms a symmetric monoidal category,
which we denote by Map(B). In the motivating example, Map(Rel) = Set. The diagonal
on B is natural when restricted to Map(B), making Map(B) into a cartesian category. In
fact, Map(B) is the largest subcategory of B that is cartesian. Thus, in the terminology
of [Sel99], Map(B) is the focus of B.

5. Relational ologs

A categorical framework for knowledge representation, generalizing the category of sets and
relations, emerges almost automatically from the abstractions developed in the previous
section. An ontology in this framework is called a “relational olog,” after Spivak and Kent
[SK12]. We will define a relational olog to be any bicategory of relations that admits
a finite description; more precisely, a relational olog is a finitely presented bicategory
of relations. Intuitively, a finitely presented bicategory of relations is the “generic” or
“free” bicategory of relations that contains a specified finite collection of basic objects,
morphisms, and 2-morphisms. It is analogous to other free constructions in algebra, such
as a free vector space or a finitely presented group. Another, more relevant example is a
functional olog that does not involve limits or colimits, which is just a finitely presented
category.

Definition. A relational ontology log (or relational olog) is a finitely presented bicategory
of relations.

In more detail, a relational olog is a bicategory of relations B presented by
e a finite set of basic types or object generators;

20

e a finite set of basic relations or morphism generators of form R : X — Y, where
X,Y are object expressions;

e a finite set of subsumption axioms or 2-morphism generators of form R = S, where
R, S are well-formed morphism expressions with the same domain and codomain.

Note that while our definition does not explicitly include equality azioms, equality of
morphisms can be reduced to subsumption. In the sequel, axioms of form R = S are
understood to be shorthand for the two axioms R = S and S = R.

We hope that the meaning of the definition is intuitively clear but let us be somewhat
more precise about our terminology. By “well-formed morphism expressions” we mean
expressions constructed from the morphism generators and the syntax of bicategories of
relations (see Table [2)) such that domains and codomains are respected in all compositions.
Similarly, “object expressions” are expressions constructed from the object generators and
the syntax of monoidal categories (® and I). A bicategory of relations B is “presented by”
a given collection of generators By if B contains (an isomorphic copy of) By and if for every
other bicategory of relations B’ containing By, there exists a unique functor F': B — B’
preserving the structure of BiRel and the generators By. As usual, this universal property
guarantees the uniqueness of B up to isomorphism. For readers concerned about the
existence of B we make the following technical remark.

Remark. The preceding definition can be made fully rigorous by formulating the axioms of
a bicategory of relations as an essentially algebraic theory. Roughly speaking, an essentially
algebraic theory is an algebraic theory that allows some operations to be partially defined,
provided the domain of definition is characterized by equations between total operations
[Fre72; PS97]. A motivating example is the theory of categories, where composition of
morphisms is partially defined. It is well known that definition by finite presentation, also
known as the “method of generators and relations,” works in any essentially algebraic
theory. There are several methods for constructing a free model from the syntax of the
theory. Generalized algebraic theories, a reformulation of essentially algebraic theories
using dependent type theory, provide a particularly elegant solution [Car86; [Pit95].

Alternatively, our foray into categorical logic (Section [§]) yields an entirely different and
fully explicit construction of relational ologs. This construction is based not on universal
algebra or dependent type theory but on the proof theory of a subset of first-order logic.

5.1. Example: Friend of a friend

While the formal definition of a relational olog is somewhat abstract, the specification of
a particular relational olog is, as a practical matter, simple and intuitive, thanks to the
graphical language of monoidal categories. To illustrate, we specify a relational olog in a toy
domain affectionately called “friend of a friend” (or “FOAF”) [BM14; [DV10]. This domain,
involving people, organizations, and their presences online, is often used to showcase the
Semantic Web technologies (RDF and OWL). We take the formal specification of FOAF as
an inspiration only, making no attempt to replicate its interface or general philosophy.

The basic types of the olog are “Person”, “Organization”, “Number”, and “String”. We
shall introduce the basic relations as we need them. Here are some essential relations for

21

our ontology:

Person Person Person Organization
knows , — | member of ,
Person Person Person Organization
s —— | works at .

The obligatory “friend of a friend” relation is just the composite

g e E

(All relations are typed but when the types are clear from context we shall suppress the
type labels.) Some of the basic relations are subsumed by others. For instance, if Alice is
a friend of Bob, then Alice knows Bob; thus, the “friend of” relation is subsumed by the

“knows” relation:
- =

Likewise, the “works at” relation is subsumed by the “member of” relation (diagram
omitted). Presumably, if Alice knows Bob, then Bob also knows Alice, so we should
declare that the “knows” relation is symmetric:

Most people would also say that the “friend of” relation is symmetric.

We can attach some basic data to each person, such as their name and age:

Person @ Number

?

Person m String Person M String
, .

We declare that these relations are (total) functions; for instance,

B < - -

In RDF and OWL, functional relations whose codomains are primitive data types are
called “properties” and are treated specially.

For extra flavor, we complement the “friend of” relation with an “enemy of” relation.
We can then define the notorious relation of “frenemy” as the intersection of friend and

22

Next, we model some basic family relationships. Having introduced a “child of” relation,
the “parent of” relation is just its inverse:

) -)

An “ancestor of” relation should possess several properties. First, it should subsume

“parent of”:
- e

It should be transitive,

ocesor ot —{wmessor a}— = —{anostor o} —

(an ancestor of an ancestor is an ancestor) and reflexive,

Person 7

(by convention, we regard every person as their own ancestor). Finally, the ancestor
relation should be antisymmetric,

=

Person

ancestor of

(if two people are both ancestors and descendants of each other, then they are the same
person). We can now deduce, rather an declare as an axiom, that the relation “grandparent
of” is subsumed by “ancestor of”:

grandparent of = w
N e e
~ [

In summary, “ancestor of” is a partial order that subsumes “parent of.” It would be more
precise to declare that “ancestor of” is the partial order generated by “parent of,” but
that cannot be expressed in a relational olog.

So far we have seen only relatively simple, binary relations. Let us now consider more
complex compound relations and relations of arity different than two. The class (unary
relation) of employed people can be defined as the class of people who work at some
organization:

Person -) Person w Organization
- o)

23

We declare a ternary relation “salary” with signature

Person

Organization

We assert that “salary” is a partial function (diagram omitted). Its domain of definition

is characterized by
B‘ i |

Alternatively, we can take this equation as the definition of the “works at” relation: a
person works at an organization if and only if they draw a salary from that organization.
As another example, a “colleague” is a person whom you know and with whom you share

a membership at some organization:
SEraTTE

colleague of =

A simple calculation, using the symmetry of “knows,” proves that “colleague of” is a
symmetric relation. More fancifully, a romantic “love triangle” is the ternary relation

Thus, a love triangle consists of two people, mutually enemies, who both love a third
person. Assuming “enemy of” is symmetric, this relation is symmetric in its first two
arguments. As long as we're indulging in Shakespearean themes, we can also define the
quaternary relation of “intergenerational family feud”:

24

Such a feud consists of two parent-child pairs, where the parents are enemies and the
children are also enemies.

Although it might be entertaining to continue along these lines, we shall stop here. We
hope we have convinced the reader that relational ologs are both expressive and intuitive.
With a little practice, it becomes easy to write down complex relations and read them at
a glance. However, there are certain natural constraints that cannot be expressed in a
relational olog, as developed so far. For instance, if we took our ontology more seriously,
we might prefer to dismiss the possibility of “frenemies” and declare that “friend of” and
“enemy of” are disjoint relations. At present we cannot express this constraint because
we cannot express the empty relation. Nor can we express unions, so we cannot declare
that, for example, the “parent of” relation is the union of the “mother of” and “father of”
relations. In Section [9] we explain how to overcome these limitations.

6. Instance data

A distinguishing feature of categorical knowledge representation, compared to the logical
paradigm, is a rich and flexible notion of instance data. The idea of instance data is simply
that of functorality. To be precise, instance data for a relational olog B in an arbitrary
bicategory of relations D is a structure-preserving functor D : B — D. We call D the
data category for the instance data D. Unsurprisingly, the “standard” data category is
Rel, the category of sets and relations. We study this important case and several others
below.

In knowledge representation systems based on description logic, instances are represented
by named constants within the logical system, usually called “individuals.” There are
several advantages to the categorical notion of instance data. First, there is a clean
separation between universal concepts, stored in the olog B, and instantiations of these
concepts, stored in the functor D : B — D. In description logic, this separation is only
partly achieved by partitioning the axioms of the knowledge base into a “TBox” and
an “ABox” (see Section . Besides its aesthetic appeal, the separation of universal and
particular knowledge has important practical benefits. In modern “big data” applications
involving a large number of individuals, storing instance data in a suitable database,
rather than as logical sentences, becomes a practical necessity. Of course, one can define
ad hoc schemes for translating between the logical system and the database system. The
point is that functors provide a simple, mathematically precise notion of “translation’
between systems.

b

Another advantage, less easily achieved by ad hoc devices, is that we can define “non-
standard” instance data by using data categories besides Rel. This possibility arises
because ologs, unlike logical theories, are algebraic structures and hence come equipped
with a general notion of structure-preserving maps, namely functors. From this point of
view, instance data for relational ologs is closely connected to functorial semantics in
categorical logic. We shall return to categorical logic in Section

Let us add, parenthetically, that it s possible to represent individuals inside a relational
olog. An individual of type X is a map c¢: I — X, since a function from the singleton
set I = {x} to X picks out an element of X. In our view, individuals should be used

25

sparingly to represent concepts that are inherently singletons. For example, there is at any
given time only one Dalai Lama, so it would be reasonable to represent the Dalai Lama
as an individual of type “Person.” It should suffice to include most “ordinary” people
only as instance data. In general, the olog should contain only universal concepts, even if
they are singletons, while the instance data contains all particular knowledge. (We grant
that when building an ontology it is not always easy to distinguish between universal and
particular, but often the difference is clear enough.)

In this section, we consider four different kinds of instance data for relational ologs. The
first and second are interpreted as relational databases and graph databases, respectively.
With minor modification, these two concepts apply equally well to functional ologs and
are treated by Spivak and Kent [SK12|. The other two kinds of instance data are specific
to relational ologs. From the matrix calculus of relations, an extension of the familiar
boolean algebra, we derive instance data in the category of boolean matrices. Finally,
we consider “non-standard” instance data in the category of linear relations. This data
category can be used to model linear dynamical systems.

6.1. Relational databases

The default category for instance data, suitable for most applications, is the category of
sets and relations. Thus, without further qualification, instance data for a relational olog
B is a structure-preserving functor D : B — Rel.

A structure-preserving functor D : B — Rel is defined by the following data. Each basic
type X of B is mapped to a set D(X) and each basic relation R : X — Y of B is mapped
to a subset D(R) of D(X) x D(Y'). The set D(X) contains the instances of type X and
the subset D(R) tabulates the instances of type X that are in relation R with instances
of type Y. By functorality, this data determines the action of D on every object and
every morphism of B, since B is generated by the basic types and relations. Moreover, in
order for D to be well-defined, it must preserve all the subsumption axioms of B. Thus,
for every subsumption axiom R = S, we require that D(R) C D(S). If the mapping D
satisfies these properties, it defines valid instance data for the olog.

Instance data is straightforwardly interpreted as a relational (SQL) database [Cod70|. In
the idealized database interpretation, there is a single-column table D(X) for each basic
type X, which defines the primary key of each instance of type X, and a multi-column
table D(R) for each basic relation R, whose columns are foreign keys associated with the
domain and codomain types of R. The tables D(R) are called “association tables” or
“junction tables” in SQL jargon. Association tables are the standard way of representing
many-to-many relationships in a relational database. The primary key of the association
table is the product of the foreign keys of the columns.

An example should make this clear. Instance data for a fragment of the “friend of a friend”
ontology (Section is shown below.

26

Person

ID Organization salary
P1 ID Person | Organization | Number
P2 01 P1 01 30,000
P3 02 P3 02 40,000
P4
knows
friend of Person 1 | Person 2

Person 1 | Person 2 P1 P2

P1 P2 P2 P1

P2 P1 P3 P4

P4 P3

As required by functorality, the “friend of” and “knows” tables are symmetric and the
“friend of” table is a subset of the “knows” table. In practice we expect to deviate slightly
from the idealized database interpretation to obtain a more compact database schema.
Most importantly, instead of representing maps as individual tables, e.g.,

Person age family name given name

1D Person | Number Person | String Person | String

P1 P1 21 P1 Doe P1 Alice

P2 P2 37 P2 Smith P2 Bob ’
P3 P3 22 P3 Williams P3 Carol

P4 P4 o4 P4 Jones P4 David

it would be more conventional to combine the maps with common domain into a single
table, e.g.,

Person
ID | age | family name | given name
P1 | 21 | Doe Alice
P2 | 37 | Smith Bob
P3 | 22 | Williams Carol
P4 | 54 | Jones David

We could represent partial maps similarly, using NULL to indicate undefined values.

By formalizing the association of instance data with an olog, it becomes possible to
migrate data in a precise, principled way. Suppose that, in light of new information or
a changing world, we decide to update the concepts in our ontology B, yielding a new
ontology B’. Ideally we can translate the concepts of B into concepts of B’ by means
of a functor F': B — B’. The functor F' can then be used to migrate the original data
D : B — Rel to updated data D’ : B’ — Rel. This paradigm is called functorial data
migration and is investigated by Spivak and collaborators in a series of papers [Spil2}
SK12; SW15; [Sch+-16]. Functorial data migration has been developed for functional ologs.
At least one data migration functor, the pullback functor, has an obvious analogue for
relational ologs. It is an open question whether the other data migration functors, the left
and right pushforward functors, admit analogues. This question, while important, is not
pursued further here.

27

6.2. Graph databases

Graph databases [AG08; RN10] provide a natural storage model for the instance data of an
ontology. In fact, the development of graph databases can be traced back to the semantic
networks and frame systems of the early era of knowledge representation [AGOS8| Fig. 1].
Even today it is sometimes suggested that graph databases are knowledge representation
systems. That is not so: graph databases offer a generic data storage model that need not
impose any logical constraints on the data. Still, the confusion exists precisely because
graph databases are so well-aligned with the practice of knowledge representation. In
this section, we explain how instance data D : B — Rel can be interpreted as a graph
database.

Unlike relational databases, which are practically synonymous with the Structured Query
Language (SQL), graph databases are an emerging technology with no universally accepted
data model or query language. Our construction maps easily onto Apache TinkerPop3
[Apalb|, an open standard for graph databases with moderate vendor adoption. The
Resource Description Framework (RDF), a core component of the Semantic Web, can
also be regarded as a graph database |[AGO05|, especially when coupled with a graph query
language like SPARQL [PS08].

The interpretation of instance data as a graph database involves a construction called the
“category of elements.”

Definition. Let B be a bicategory of relations. The category of elements of a structure-
preserving functor F' : B — Rel, denoted [F' or [F, has as objects, the pairs

(X, x) where X eB, zeFX),
and as morphisms (X, z) — (Y,y), the morphisms in B
R:X =Y such that zF(R)vy.

Composition and identity morphisms are inherited from B.

Remark. Technically, this definition is not included in the usual notion of a category of
elements |Riel6], §2.4], which applies to functors F' : € — Set, nor in the more general
Grothendieck construction [Jac99, §1.10], which applies to functors F' : € — Cat. However,
it is evidently the same idea, so we will use the same terminology.

A category of elements [F' is itself a bicategory of relations, with its structure inherited
from both B and Rel. The monoidal product is defined by

(X7Qj)®(y7y) = (X(X)Y,({L’,y)), IfF:: (IB’*)'

The diagonal maps are A(x) = Ax and Qx4 := Ox. These morphisms behave as
expected because F is structure-preserving. For example, there is a copying morphism
Ax : (X,z) - (X ® X, (2/,2")) in [F if and only if 2z = 2’ and = 2”. Finally, the
2-morphisms of [F' are just the 2-morphisms of B. (It is tempting to declare that R = S
in [F whenever F(R) = F(S) in Rel, but under that definition [F' is not necessarily
locally posetal.)

28

Given instance data D : B — Rel, we think of [D as a graph database as follows. The
vertices of the graph are the objects (X, z) of [D. The vertex labels (or vertex types) are
the objects X of B, given by the canonical projection functor [D — B. The directed
edges of the graph are morphisms (X, x) LN (Y,y) of [D. The edge labels (or edge types)
are the morphisms R of B, again given by the projection functor [D — B. As an
example, the instance data for the FOAF ontology yields the graph database:

friend of

knows

friend of

knows

Person Person

knows

As with relational databases, the idealized graph database interpretation may require
modification to accommodate real-world database systems. The size of the graph can
be considerably reduced by representing maps with “primitive type” codomains (e.g.,
“Number” or “String”) as “vertex properties,” a feature supported by most graph databases.
Symmetric relations, such as “knows” and “friend of,” can be represented by one undirected
edge instead of two directed edges. Another issue, not arising with relational databases, is
the representation of relations whose domain or codomain is a product of basic types, such
as the “salary” relation. If the database included vertices only for basic types, we would
need directed hyperedges [Gal+93|, a feature not supported by most graph databases. The
solution is to include vertices for product types and edges for the projection morphisms. In
fact, this encoding is accomplished automatically by the monoidal product in the category
of elements.

6.3. Boolean matrices

We now consider instance data derived from the matrix calculus of relations. Unlike
relational and graph databases, the matrix calculus has no analogue for functional ologs.
It is a special case of categorical matriz calculus, which can be performed in any biproduct
category |[CP10, §3.5.5], [Har09).

Let B = {0, 1} be the commutative “rig” (commutative ring without negatives) of booleans,
whose operations are defined by

0+0=0, 0+1=1+0=1, 1+1=1
0-0=0, 0-1=1-0=0, 1-1=1.

That is, addition in B is logical disjunction and multiplication in B is logical conjunction.

Definition. The category Mat(B) of boolean matrices has as objects the natural numbers
and as morphisms m — n the m x n matrices over B. Composition is defined by matrix
multiplication and the identity morphisms are the identity matrices.

29

We interpret a matrix R € B™*" as a relation with domain [m] = {1,...,m} and
codomain [n] = {1,...,n}, where individual ¢ € [m] is in relation R with individual
J € [n] if and only if R; ; = 1. As expected, composition in Mat(B) is given by existential
quantification:

(R-S)x=1 iff Jj:Ri;=1AS; =1

The category of boolean matrices is a bicategory of relations. There is a 2-morphism
R = S if and only if R < S (elementwise). The monoidal product is the tensor product
of matrices:

R4S - RypS
R®S := : - :
R,1S -+ RpnS
The diagonals are defined by

A, = (elelT eneZ) e B and On = |1] €eB™
1

where e; is the ith standard basis vector. With these definitions, the dagger is simply the
matrix transpose, Rf = RT. Given matrices R, S € B™", a quick calculation shows that
local intersections are given by the elementwise (Hadamard) product:

Rl,lsl,l e Rl,nsl,n

RNS =A,(R® SV, = = ROS.

Rm,lsm,l Tt Rm,nsm,n
Thus we recover the usual intersection of relations.

Anticipating Section [0} we equip Mat(B) with a second monoidal product, the direct sum

of matrices:
R 0
ros (5 9)

Define a codiagonal with respect to the direct sum by

v, = <]”> € B and W, := () =0 x n matrix,

I
where [, is the n X n identity matrix. We recover unions of relations from the formula
RUS :=aA,(R®S)V, =R+ S.
This construction will be revisited and generalized in Section [9]

Matrix data—instance data in the category of boolean matrices—for a relational olog B is
a structure-preserving functor D : B — Mat(B). Each basic type X of B is mapped to a
natural number D(X) and each basic relation R : X — Y is mapped to a D(X) x D(Y)
matrix D(R) over B, such that all the subsumption axioms of B are satisfied. For example,
the instance data for the FOAF ontology becomes

0100 01 00
D(friend of) = é 8 8 8 , D(knows) = (1) 8 8 (1)
0000 0010

30

The two matrices are symmetric because the corresponding relations in B are. Note that
relations with (theoretically) infinite domain or codomain, such as “family name,” “given
name,” and “salary,” cannot be represented as matrices.

The matrix representation of relations plays an important role in data analysis applications.
A symmetric relation R with the same domain and codomain, such as the “friend of”
relation, is often regarded as an undirected graph, with D(R) its adjacency matriz. This
simple observation is the starting point of the spectral analysis of network data, a rich
and active area of statistical research [Mah16]. Matrix data offers yet another example of
how instance data can be used to connect an ontology to another computational system
in a mathematically precise way.

6.4. Linear relations

Relational and graph databases are both realized by functors D : B — Rel, and matrix
data can be regarded as a repackaged functor D : B — FinRel, where FinRel is the
category of finite sets and relations. On the basis of these examples one might suppose
that, in general, instance data amounts to a functor into Rel. That would be mistaken. In
this section, we describe a counterexample of practical significance, the category of linear
relations. This category has been studied by Baez and Erbele [BE15], and independently
by Bonchi, Sobociriski, and Zanasi [BSZ14], as a model of signal flow diagrams in control
theory. Note that the material in this section is peripheral to the main development of
the paper and can be skipped without loss of continuity.

Definition. The category of linear relations, denoted VectRely, is the category whose
objects are finite-dimensional vector spaces (over a fixed field k) and whose morphisms
L : U — V are linear relations, which are vector subspaces

LCcUeaV.

Composition and identity morphisms are defined as in Rel; thus, given linear relations
L:U—Vand M :V — W, the composite LM : U — W is

LM ={(u,w) | v eV : (u,v) € LA (v,w) € M}.

The category of linear relations is a bicategory of relations. The 2-morphisms are subspace
inclusions. The monoidal product is the direct sum (which we always write as @, not ®)
and the monoidal unit is the zero vector space. The diagonal is defined by

V — {0}

A V-VeaeV
v v 0.

v (v,0)

and Qv : {

Given these definitions, the maps in VectRely are just linear maps, in the usual sense.
Be warned that the dagger is not the matrix transpose, in contrast to Mat(B); indeed,
the transpose of a linear map is always another linear map, but fT is not a linear map
unless f is invertible. As in Rel, the dagger simply effects a formal exchange of inputs
and outputs.

31

However, the linear transpose leads to interesting structure not present in Rel. The
transpose of the duplication map Ay is the addition map

VeV -V

v, =A]
v v {(’Ul,'UQ)H’Ul‘i‘UQ

and the transpose of the deletion map (v is the zero map

{0} =V
m =9
vi= v { 0 0.
The linear relations Ay == ¥i, : V — V@V and 4, := B, : V — {0} are called
coaddition and cozero, respectively.

The family of maps (¥, By) form a codiagonal structure on VectRel,. Moreover, every
linear relation L : U — V is a lax monoid homomorphism with respect to this structure,
meaning that

(L ©® L)'v = VyL and n — ;L

The duality exhibited here motivates the following definition.

Definition ([CW8T7, §5]). An abelian bicategory of relations is locally posetal 2-category
B that is also a symmetric monoidal category (B, ®, I) with diagonals (X, Ax, 0 x) and
codiagonals (X, ¥x, Ax) such that
e every morphism R : X — Y is a lax comonoid homomorphism and a lax monoid
homomorphism;
e the morphisms Ax, Ox, ¥x, By have right adjoints, denoted Vx,Ox, Ax, ¢x;
e both pairs (Ax,Vx) and (Ax, ¥x) obey the Frobenius equations.

Remark. An equivalent, more succinct definition is that an abelian bicategory of relations is
a locally posetal 2-category B such that both B and B are bicategories of relations with
respect to the same monoidal product. Here B is the 2-category B with all 2-morphisms
reversed. See Section [9 for further discussion.

The category of linear relations, VectRely, is an abelian bicategory of relations. The usual
category of relations, Rel, is not an abelian bicategory of relations.

The category of linear relations would obviously be an inappropriate data category for
the FOAF ontology. Linear relations are useful for representing systems of linear ordinary
differential equations (ODEs), as argued by Baez and Erbele [BE15]. The graphical
language of monoidal categories then formalizes the signal flow diagrams that appear in
control theory and other engineering fields. In this setting, one takes the field £ = R(s),
the real numbers R with a formally adjoined indeterminate s. Upon taking Laplace
transforms, differentiation becomes the linear operation of scalar multiplication by s and
integration becomes multiplication by 1/s. A linear relation L : k™ — k™ is a system of
linear, constant-coefficient ODEs with m input signals and n output signals.

The damped, driven harmonic oscillator provides a simple, one-dimensional example. The
equation of motion is
d*x

dx
m@ + BE + /i!L‘(t) = F(t),

32

where x is a position or angle and F' is a driving force. Provided the oscillations are not
too large, this equation accurately describes a mass on a spring or a pendulum under
gravity, subject to an additional driving force. The system can be represented by a linear
relation £ — k with input F' and output x:

SAO

The dark nodes are coaddition and the light nodes are coduplication. It is perhaps easier to
read the diagram from right to left, noting that the formal inverse of the integration map
[is the differentiation map %. The same diagram is drawn in conventional engineering
notation in [Fril2, Fig. 2.1]. A string diagram for a more complicated system, the “inverted
pendulum,” is presented in [BE15, §5].

Like the previous data categories, the category of linear relations deserves a more compre-
hensive treatment than space here permits. We include it mainly as a concrete example
of the “non-standard” instance data enabled by functorial semantics. The possibility of
instance data with extra algebraic or topological structure is a distinctive—and sometimes
useful—feature of categorical knowledge representation that is not easily replicated in a
purely logical system.

7. Types and the open-world assumption

The use of types is another distinctive feature of categorical knowledge representation.
Unlike instance data, types can be added to existing logical systems without too much
difficulty; we shall do so in Section [§ Nonetheless, we regard types as distinctive because
category theory is typed “by default,” while logic is not, and because, as a practical
matter, the knowledge representation systems in common use are untyped. In this section,
we discuss the significance of types for knowledge representation.

The reader may be puzzled by the claim that knowledge representation frameworks based
on description logic are untyped. Isn’t the assignment of individuals to concepts a form of
typing? Indeed, isn’t a primary purpose of description logic to taxonomize the types of
things existing in a given domain via a hierarchy of interrelated concepts? If so, what
could be the purpose of adding a second, explicit form of typing to the system? These
questions have merit and we shall try to answer them in this section.

First, we explain why description logic is untyped. Consider the relation “friend of” from
the FOAF ontology (Section [5.1)). We want to express that only people can be friends.
In description logic, we would use a value restriction (see Sections [2| and [3)) to ensure
that any two individuals in the “friend of” relation belong to the concept “Person.” Then,
given any two individuals belonging to the disjoint concept “Organization,” the answer

33

to the question “Are the two entities friends?” would be “No.” On one view that is a
perfectly reasonable answer. But on another it is confused. We might argue that the
answer to the question is neither “yes” nor “no” because the question does not make
sense. Organizations are simply not the kind of things that can be friends with each
other. Merely by asking whether two organizations are friends, we commit a category
mistake—using “category” in the sense of Gilbert Ryle, not Eilenberg and Mac Lane.
A programmer would call it a type error. These two possible responses illustrate the
philosophical difference between classes and types.

More prosaically, in description logic any concepts are comparable, while in relational ologs
only relations with the same domain and codomain are comparable. Thus, in description
logic, there is a universal concept, to which all individuals belong, and it is possible to
take the intersection of any two concepts. By contrast, a relational olog has only local
maxima and local intersections within each collection of typed relations X — Y.

These distinctions have practical implications for knowledge representation. To bring
this out, we consider two different methods of constructing a taronomy of entities in a
relational olog. This task, although probably overrepresented in KR research, is important
in many applications. The first method, effectively untyped, is based on subsumption of
concepts with a single domain type. The second method creates a hierarchy of different
types connected by inclusion maps.

We shall see that the difference between the two methods is related to the open and
closed world assumptions in database theory and knowledge representation [Rei78]. Under
the open world assumption, any statements that are not deducible from a knowledge
base are not assumed to be either true or false. Under the closed world assumption,
certain statements that are not deducible are assumed to be false. The open world
assumption is the standard mode of reasoning in logical systems, including first-order
logic and description logic. The closed world assumption is commonly used in databases
and ruled-based knowledge representation. For example, in the database for the FOAF
ontology (Section , the absence of a row in the “friend of” table for Alice and Carol
is interpreted as the absence of friendship between Alice and Carol—mnot the absence of
knowledge of whether Alice and Carol are friends. More generally, closed world reasoning
makes assumptions about what is true based on what is not explicitly stated.

To create a taxonomy in the style of description logic, we work with concepts C' : X — [
over a fixed domain type X. The subsumption axiom C' = D asserts that every instance
of concept C' : X — [is also an instance of concept D : X — I. A collection of such
axioms implicitly defines a hierarchy of concepts and sub-concepts. Inferences about
concepts are made under the open world assumption. In particular, no two concepts C, D
are provably disjoint unless there is a disjointness axiom C'N D = | (or disjointness can
be inferred from other axioms). Relational ologs support disjointness axioms through the
extensions of Section [

In a relational olog, it is also possible to represent a taxonomy as a hierarchy of types.
For each kind in the taxonomy we define a type X. To declare that type X is a subtype
of type Y, we add an inclusion map ¢ : X — Y. An inclusion of X into Y is simply a

34

morphism ¢ : X — Y that is an injective map. Injectivity is asserted by the axiom

L - D

Given instance data ' : B — Rel, the function F(¢) associates each element of F/(X)
with a unique element of F'(Y'), thereby identifying F'(X) with a subset of F/(Y'). In this
way we interpret X as a subtype of Y. Inferences about types in the hierarchy are made
under what amounts to a closed world assumption: unless explicitly stated, distinct types
are unrelated. Two types unconnected by any morphism are not merely “disjoint,” they
occupy different universes. It is not permitted to contemplate their intersection.

These design patterns are not mutually exclusive, and we expect that they can be profitably
combined. On one hand, the open world assumption enables inference about concepts
that are not recorded by, or even anticipated by, the creator of the ontology. It embodies
the ethos of the Semantic Web, which, like the World Wide Web, allows “anyone to say
anything about anything.” On the other hand, it can be inconvenient in scientific domains
with a large and tightly controlled vocabulary, such as biology and biomedicine. The Gene
Ontology, for example, contains tens of thousands of concepts related to genes and their
biological functions [Ash+00]. Many of them are disjoint, and all these constraints must
be recorded. Graphical ontology editors like Protégé simplify these tasks [Mus15|, but
omissions are still easy to make. We suggest that a judicious use of typing could eliminate
the most embarrassing errors of this kind.

Some authors have tried to augment description logics like OWL with closed world
reasoning [KAH11; [SKH11|. This work is partly motivated by the need for closed world
reasoning when an ontology is used “like a database” to make inferences about particular
individuals. In this context, it is instance data, not typing, that offers a simple solution.
Given a relational olog B and instance data D : B — Rel, inference in B is open
world (modulo constraints imposed by the type system). By contrast, inference in the
bicategory of relations D(B), a subcategory of Rel, is closed world. For any two relations
R,S : X — Y, there is a subsumption D(R) = D(S) in the database if and only if the
table D(R) is a subset of the table D(S). Assuming the database has complete information
with respect to a given population, if a subsumption D(R) = D(S) holds at the instance
level, then we can regard the subsumption R = S as valid for that population, even if
R = S cannot be deduced at the knowledge level (in B). This is a form of closed world
reasoning. Again, we see the utility of a clean separation between universal and particular
knowledge.

Another important use of types is to represent “concrete data types” like integers, real
numbers, and strings within an ontology. All practical description logic systems, including
OWL, support data types, but only though ad hoc extensions of the logical language
[Baa+07), §6.2]. We grant that software implementations may need to handle primitive
data types specially, but think it inelegant to distinguish in the mathematical formalism
between “abstract” types like “Person” and “Organization” and “concrete” types like
numbers and strings.

As others have observed, category theory builds a bridge between traditional mathematical
logic and programming language theory. In this setting, it connects description logic with

35

type theory. Relational ologs are based on simple type theory. Of the two basic algebraic
data types, we already have product types, and we shall introduce sum types in Section [9]
We could conceivably use a more sophisticated type system. For example, instead
representing subtypes by inclusions, we could add first-class subtypes and polymorphism.
Polymorphic and other type theories have been extensively investigated in the context of
categorical logic |Cro93; |Jac99).

In the programming language community, it is generally accepted that some amount of
typing increases the robustness and maintainability of software systems (although opinions
differ greatly as to how much typing is desirable). Apart from low-level assembly lan-
guages, there are virtually no programming languages in common use that are completely
untyped. In the same spirit, we argue that at least some typing is desirable in knowledge
representation systems. The extent and sophistication of the typing will depend on the
application and on personal preferences.

8. Categorical logic

There is a fundamental connection between relational ologs and logical formalisms for
knowledge representation. We foreshadowed this connection in Section [3| by defining
the structures that make Rel into a bicategory of relations using logical, rather than
set-theoretic, notation. In fact, it is possible to reason about any bicategory of relations
using first-order logic, in effect pretending that it is Rel. This conclusion is perhaps
surprising, since some bicategories of relations, such as the category VectRel of linear
relations (Section [6.4)), look “from the outside” quite different than Rel.

The purpose of this section, and the attendant Appendix [A] is to make precise the
connection between relational ologs and first-order logic. Our results belong to categorical
logic, which represents both syntax and semantics as categories and interpretations of
logical theories as functors. The field was initiated by Lawvere’s seminal thesis on the
functorial semantics of algebraic theories [Law63]. An important result of categorical
logic, perhaps the best known application of category theory to computer science, is that
the simply-typed lambda calculus is the internal language of cartesian closed categories
[LS88; |Cro93; |Jac99]. In a similar spirit, we prove that a certain fragment of first-order
logic, called “regular logic,” is the internal language of bicategories of relations.

We now explain semiformally the correspondence between regular logic and bicategories
of relations. For details and proofs, we refer to Appendix [A]

Regular logic is the fragment of first-order logic with connectives 4, A, T,=. Unlike
traditional first-order logic, regular logic is typed (cf. Section . Every variable z, free
or bound, is assigned a type A, expressed by writing x : A. To indicate the types of free
variables, every formula of regular logic is associated with a list of type assignments, called
a context. Here are some examples of formulas in context:

x: Ay Bl R(z,y) AS(z,y)
x:Az:C|3y: B.(R(z,y) N S(y, 2))
A AL Al (r=2)N (z=2")

x: AT

36

In general, a formula in context has form I' | ¢, where ¢ is a formula and I' is a context
containing all the free variables of (.

A theory in regular logic, or regular theory, is defined by the following data. There is a set
of basic types A, B, ... and a set of relation symbols R, S, Each relation symbol R
has a fixed signature (A, ..., A,) that determines its arity and argument types. A regular
theory also has a set of azioms of form I' | ¢ F ¢, which we interpret as: “by assumption,
v implies 9 in the context I'” Given a regular theory T, we say that I' | ¢ entails T | ¢
under the theory T, or that I' | ¢ F 4 is a theorem of T, if I' | ¢) can be deduced from IT"| ¢
using the axioms of T and the inference rules of the proof system for regular logic.

As an example, we define a regular theory capturing a fragment of the “friend of a friend”
ontology (Section [5.1). The types of the theory are “Person,” “Organization,” “Number,”
and “String.” Its relation symbols include

knows : (Person, Person), friend of : (Person, Person),

works at : (Person, Organization), salary : (Person, Organization, Number).
The symmetry of the “knows” relation is expressed by the axiom
x : Person, y : Person | knows(z, y) - knows(y, x).
The “works at” relation is determined by
x : Person, y : Organization | 3z : Number.(salary(z, y, z)) -+ works at(x, y),

where, as usual, - is shorthand for F and - (two axioms).

We establish a correspondence between regular theories and bicategories of relations.
First, to every regular theory T, we associate a bicategory of relations CI(T), called
the classifying category of T. The classifying category is constructed directly from the
syntax of regular logic. Its objects are finite lists of types A = (A1, ..., A,), which can be
regarded as a-equivalence classes [I'] of contexts I' = z : A. Its morphisms are equivalence
classes of formulas in context [I'; A | ¢] : [I'] = [A], where equality of formulas is up to
a-equivalence (renaming of variables) and deducible logical equivalence under the axioms
of T. For instance, in the “friend of a friend” theory, we have

[z : Person;y : Org | 3z : Number.(salary(x,y, z))] = [a : Person; b : Org | works at(a, b)].

The semicolon in the context partitions the free variables into domain and codomain;
it serves no logical purpose. To make CI(T) into a bicategory of relations, we define
composition, products, and diagonals analogously to Rel (Section .

Conversely, to every small bicategory of relations B, we associate a regular theory Lang(B),
called the internal language of B. Its types are the objects of B and its relation symbols are
the morphisms of B. Note that Lang(B) necessarily has infinitely many types and relation
symbols! The axioms of Lang(B) are chosen to guarantee that formulas corresponding
to equal morphisms are provably equivalent. To make sense of this statement, we must
explain how an arbitrary formula in context I' | ¢ of Lang(B) can be interpreted as a
morphism [I" | ¢] of B. The mapping [-] is essentially inverse to the constructions making
the classifying category into a bicategory of relations. We prove a soundness theorem for

37

general interpretations of a regular theory T in a bicategory of relations B, yielding a
categorical semantics for regular logic.

The main result of this section, proved in Appendix [A] is that Cl is inverse to Lang in an
appropriate sense.

Theorem. With respect to typed reqular logic, for every small bicategory of relations B,
there is an equivalence of categories

Cl(Lang(B)) ~ B in BiRel

Consequently, we can regard regular theories and small bicategories of relations as “the
same.” Besides enriching our understanding of relational ologs, this result is potentially
practically useful, as it enables the transfer of tools and techniques between category
theory and logic. What should it mean to give “instance data” for a description logic
knowledge base, assuming it can be expressed as a regular theory T? We simply ask what
data is required to give a structure-preserving functor D : CI(T) — Rel. What should be
meant by a “translation” T — T’ between knowledge bases T and T'? Again, we need
only ask what data is needed to give a functor F': CI(T) — CI(T"). We will not carry out
these exercises here but it is instructive to do so.

In the other direction, we can reason about a relational olog B by performing logical
inference in Lang(B). This observation is significant because the computational aspects
of category theory are highly underdeveloped in comparison with logic. Much research on
description logic is directed towards its computability and complexity theory, and there is
a long tradition of computational first-order logic. Many mature inference engines and
theorem provers exist. By contrast, the theory and practice of computational category
theory, especially higher category theory, is only now emerging [Mim14; KZ15; BKV16].

Bibliographic remarks Regular logic has been thoroughly studied by categorical logicians
as the simplest fragment of first-order logic with a quantifier [Awo09; [But98}; (O0s95]. Our
categorical semantics of regular logic is quite different from the usual one. Conventionally,
a formula I' | ¢ is interpreted as a subobject [I" | ¢] of the object [I']: an equivalence class
of monomorphisms into [I']. A category suitable for such interpretations, called a regular
category, has all finite limits and “well-behaved” subobjects. The classifying category of a
regular theory is a regular category whose objects are (equivalence classes of) formulas
in context and whose morphisms are (equivalence classes of) formulas in context that
are provably functional. In our framework, the classifying bicategory of relations has
as objects (equivalence classes of) contexts and as morphisms (equivalence classes of)
formulas in context. The latter perspective seems more natural to us.

The germ of the above theorem is present already in the original paper of Carboni and
Walters [CW87, Remark 2.9 (iii)], but to our knowledge has never been carefully developed.
There are also strong connections between bicategories of relations and regular categories.
Given a regular category C, there is a bicategory of relations Rel(C) with the same objects
as € and with morphisms A — B equal to the subobjects of A x B—a construction that
predates and motivates Carboni and Walters’ paper. Yet not every bicategory of relations
arises in this way. Conversely, if a bicategory of relations B is functionally complete, then
Map(B) is a regular category [CW8T7, Theorem 3.5]. Yet in general Map(B) need not be

38

a regular category. Thus, to a limited extent, it is possible to pass between bicategories of
relations and regular categories.

9. More expressive relational ologs

Relational ologs, as developed so far, can express local intersections and maxima. As
proved in Section [§] their internal language is the regular (3, A, T, =) fragment of first-
order logic. It is natural to ask for more expressive relational ologs allowing local unions
and minima. In logical terms, they should correspond to the coherent (3, A,V, T, L, =)
fragment of first-order logic. In this section, we develop such highly expressive relational
ologs, called distributive relational ologs. We follow the pattern established by Sections
to o first, we present the relevant monoidal structures on Rel; next, we abstract from Rel
to formulate a general categorical structure, called a distributive bicategory of relations;
finally, we define a distributive relational olog to be a finitely presented distributive
bicategory of relations.

9.1. The category of relations, revisited

The category of relations has another interesting monoidal product, besides the Cartesian
product: the disjoint union. In this section, we explain disjoint unions from a categorical
perspective. As in Section |3] our presentation draws on the survey [CP10], especially §3.5
on “classical-like” monoidal products.

The disjoint union (or tagged union) is defined on objects of Rel by
XeY ={(z,1):2e X}U{(y,2):y €Y}

An element of X @Y is either an element of X or an element of Y, plus a special tag to
avoid ambiguity when X and Y intersect. Given morphisms R: X — Y and §: 2 — W
of Rel, the disjoint union R® S : X & Z — Y & W is defined by

R(t,s) ifi=j=1
(t,i)(R&® S)(s,7) iff S(t,s) ifi=j=2

1 otherwise

The monoidal unit is O := (), the empty set. Finally, the braiding morphism oxy :
X @Y — Y @ X exchanges the tags. With these definitions, (Rel, ®, O) is a symmetric
monoidal category.

The category of relations is now equipped with two monoidal products. In general, when
working with two monoidal products ® and &, we call the first product ® the tensor and
the second product @ the cotensor. To avoid confusion, we will always use “light” notation
for structures associated with the tensor and “dark” notation for structures associated
with the cotensor. What that means should become clear shortly.

We would like to reason about both monoidal products using a single graphical language.
Unfortunately, that is not entirely straightforward. The basic problem is that we now have

39

an effectively three-dimensional language, with dimensions corresponding to composition,
the tensor, and the cotensor, but drawing pictures in dimensions greater than two is highly
impractical. We discuss (two-dimensionall) graphical languages for multiple products
below. For the moment, we work exclusively with the cotensor and can therefore employ,
without ambiguity, the usual graphical language of monoidal categories.

We now consider structures derived from the disjoint union. Define the codiagonals
Vx: XX — X and By : O — X on Rel by

(2,9)¥ xa' if z=4a"

Note that the initial morphism By must be the (typed) empty relation O — X. Define
the diagonals Ay == ¥§ : X - X ® X and 4y := B : X — O by duality. As in
(Rel, ®, I), these morphisms form special t-Frobenius monoids; in particular, they satisfy
the Frobenius equations.

The disjoint union is logically dual to the Cartesian product. The union R U S of two
relations R, S : X — Y is Ax(R & S)V¥y or, in graphical language,

Similarly, the typed empty relation Lxy : X — Y, or local minimum, is ¢x - ly:

X Y
*————

lxy = —e

In particular, the boolean L : I — ['is L;; = 4;- M.

There is a categorical interpretation of logical duality. The familiar principle of 1-
categorical duality establishes a correspondence between a category € and its opposite
C°P. In a bicategory of relations, this form of duality is captured by the dagger functor.
By analogy, in a 2-category B, we can consider the 2-category B obtained from B by
reversing all 2-morphisms. The correspondence between B and B is duality at the level
of 2-morphisms. If B is a bicategory of relations, then 2-categorical duality is logical
duality. Consider the situation in Rel. The diagonals Ax and {x are maps, and the
codiagonals ¥y and By are also maps. Equivalently, the diagonals Ax and {x are maps
in Rel, while the diagonals Ax and #x are maps in Rel®. Thus (Rel®, ®,0) is also a
bicategory of relations, provided we verify the axiom on lax monoid homomorphisms.

In fact, a stronger statement holds, breaking the symmetry between products and sums.
Unlike the diagonals Ax and ¢ x in (Rel, ®, I), the codiagonals ¥ x and By in (Rel, ®, O)
are natural. That is, for every relation R : X — Y, we have (R &® R)Vy = VxR and
B R = Wy, or graphically

X

B Y :>X®Y
X [-

40

and

Likewise, we have Ax(R @ R) = RAy and R4y = ¢x. This situation motivates the
following definition.

Definition. Let (C, @, 0) be a symmetric monoidal category. The monoidal product @
on Cis a

e a (categorical) product if there exists a diagonal (A4, 44), natural in A;

e a (categorical) coproduct if there exists a codiagonal (¥4, M4), natural in A;

e a biproduct if it both a product and coproduct, such that for any objects A;, As,

the projection maps m = 14, © 44, and ™ = €4, @ 14,, the inclusion maps
11 = 1a, @My, and 1, = Wy, ® 1,,, and zero maps 0;; = 4,,M,, satisfy the
equations
14 ifi=9y
Lz"7Tj=5z‘,j = . o (].7 1,7 =12
0;;, ifi#j

Remark. Although it is not immediately obvious, these definitions of “product” and
“coproduct” agree with the standard definitions via universal properties [HV12].

The category of relations is a biproduct category with respect to the disjoint union.
Another prime example of a biproduct category is (Vecty, ®), the category of finite-
dimensional vector spaces and linear maps, equipped with the direct sum. The category
of linear relations, VectRely, is not a biproduct category.

Interactions between monoidal products We have hitherto studied the disjoint union
only in isolation. We now consider how the Cartesian product and disjoint union interact
in Rel. On the objects of Rel, there is a natural isomorphism

XeYeZ)2(XeY)ad (X®2),

given by (z, (w,i)) — ((x,w), 1), that expresses the distributivity of products over sums.
In words: having an element of X and an element of Y or Z is the same as having
elements of X and Y or elements of X and Z. Here is one possible general definition of
distributivity in a monoidal category.

Definition ([Jay93|). A distributive monoidal category is a symmetric monoidal category
(C,®, I) with coproduct @ that satisfies the distributive law: for any objects A, B, C, the
canonical distributivity morphism

(A®B)® (A®C)— A® (B (),
determined by the universal property of the coproduct, is an isomorphism.

Remark. A rig category, or bimonoidal category, retains the distributive law but relaxes
the requirements that the tensor be symmetric and that the cotensor be the coproduct.
It categorifies the classical algebraic structure known as a “rig” (ring without negatives)
[BD98]. For the purposes of this paper, the extra generality of rig categories is unnecessary.

41

Besides Set and Rel, examples of distributive monoidal categories include Ab, the
category of abelian groups, and Vecty, the category of finite-dimensional vector spaces,
both equipped the tensor product ® and the direct sum &.

The distributive law extends to morphisms of Rel in a familiar way. For any three relations
R, S, T: X — Y, we have

RN(SUT)=(RNS)U(RNT).

It is tempting to display this equation diagrammatically:

As noted at the beginning of this section, diagrams involving two monoidal products
take us beyond the firmly established graphical language of monoidal categories. The
picture above relies on context derived from the copy and merge nodes to determine which
monoidal product is “active” at a given point. In this case the notation is unambiguous,
but in general one must take care to avoid coherence problems, especially when working
with the monoidal units. We conjecture that soundness is maintained if the cotensor
is restricted to forming unions (via the morphisms Ax and ¥x) and local minima (via
¢ and By). This restricted language is already sufficient for applications that do not
directly utilize sum types, a special case of some practical interest.

In the literature, proof nets are established as a graphical calculus for categories with
two monoidal products. Girad introduced proof nets in his seminal paper on linear logic
|Gir87|. Blute et al generalized the formalism to weakly distributive and *-autonomous
categories (models of linear logic), adopting a graphical style reminiscent of string diagrams
[Blu+96]. Unfortunately, proof nets are considerably more complicated than string
diagrams, accommodating monoidal units through special “thinning links.” In our view
it remains an open problem to define a graphical language for categories with multiple
monoidal products that is provably coherent—sound and complete—but still simple
enough for practical use by nonspecialists.

9.2. Distributive bicategories of relations

Motivated by distributivity in the category of relations, we define a categorical abstraction
called a “distributive bicategory of relations.” We begin with the following more general
definition.

Definition. A union bicategory of relations is a locally posetal 2-category B, a symmetric
monoidal category (B,®, 1) with diagonals (X, Ay, 0x), and a symmetric monoidal
category (B, ®,) with codiagonals (X, ¥y, Ax), such that

42

e every morphism R : X — Y is a lax comonoid homomorphism and a lax monoid
homomorphism;

e the morphisms Ax, Ox, ¥x, Bx have right adjoints, denoted Vx,Ux, Ax, ¢x;

e both pairs (Ax, Vx) and (Ax, ¥x) obey the Frobenius equations.

Equivalently, a union bicategory of relations is a locally posetal 2-category B such that
both B and B are bicategories of relations (not necessarily with respect to the same
monoidal product).

Remark. To our knowledge, this definition does not appear in the literature. Note that
Johnstone’s “union allegory” insists that unions are preserved by composition |[Joh02)]
§A3.2]; under our definition of “union bicategory of relations,” the strongest statement
that can be made about the interaction between unions and composition is the logical
dual of the modular law, (RUTST)S C RSUT.

The definition postulates no relationship whatsoever between the two monoidal products.
An abelian bicategory of relations (Section is a union bicategory of relations where
the two products coincide. In our main example VectRely, the union L U M of two linear
relations L, M C U @V is the vector space sum L + M. The other important special case
of a union bicategory of relations is the distributive bicategory of relations.

Definition. A distributive bicategory of relations is a union bicategory of relations where
the cotensor is the categorical coproduct.

We denote by DistBiRel the category of (small) distributive bicategories of relations and
structure-preserving functors.

Remark. Carboni and Walters mention “distributive” bicategories of relations in passing,
but do not clearly state a definition [CW87, Remark 3.7]. It seems likely that our definition
is what they had in mind. Freyd and Scedrov utilize an analogous concept of “distributive
allegory” [FS90].

Of course, Rel is a distributive bicategory of relations. Another example is the category
of boolean matrices, Mat(B), introduced in Section

Several important properties are implicit in the definition. As the name suggests, the
distributive law holds automatically in a distributive bicategry of relations. In fact, if
(€, ®, 1) is any compact closed category and @ is the coproduct, then € is a distributive
monoidal category [Jay93]. Moreover, it can be shown that intersections distribute over
unions in a distributive bicategory of relations. Also, the coproduct in a distributive
bicategry of relations is automatically a biproduct, by the symmetry of a dagger category.
(Alternatively, products or coproducts in a compact closed category are always biproducts
[Hou08].) Table [3| summarizes the extra notation associated with a distributive bicategory
of relations, extending Table [2] in Section []

Lastly, following the established pattern, we define a corresponding notion of olog. All
remarks made in Section [5| about the meaning of “finitely presented” remain in force.

Definition. A distributive relational olog is a finitely presented distributive bicategory of
relations.

43

Structure Name Notation and definition

biproduct category biproduct ReS
braiding oxy
merge Vx
create [P%
copy Ax =V = VE{
delete ¢ =0 = I}
logical union RUS :=Ax(R® S5)Vy
false 1l:=¢; N
local minimum Ixy :=6x By

Table 3: Summary of extra morphisms in a distributive bicategory of relations

Distributive relational ologs are very expressive. The only connectives of first-order logic
not directly expressible are negation and universal quantification. However, the negation,
or complement, of a relation R : X — Y can be implicitly defined by introducing another
relation S : X — Y together with the two axioms RN S = Lxy and Txy = RUS. In
graphical language, the axioms are beautifully symmetric:

This definition of negation makes sense in any union bicategory of relations. In Rel,
negation is the usual set-theoretic complement; in VectRely, it is the subspace complement
(internal direct sum).

9.3. Categorical logic with product and sum types

By now it should be evident that distributive relational ologs correspond, in some sense,
to the fragment of first-order logic with connectives 4, A,V, T, L, =. This fragment is
called coherent logic or, in older literature, geometric logic. Coherent logic, or variants
thereof, has been used in axiomatic geometry [ADMO09| and in automated theorem proving
[Sto+14} (GG16], in part because it is more readily interpretable by humans than richer
logics. Coherent logic is nonetheless as expressive as first-order logic, in the sense that
any first-order theory can be translated into an equivalent coherent theory called its
Morleyization [Joh02, Lemma D1.5.13]. In the Morleyized theory, negations are encoded
by the two axioms shown above.

Despite the suggestive analogy, a direct translation of Section [§] founders, due to the
presence of sum types. In a bicategory of a relations, any two objects X and Y have a
product X ® Y, but our system of typed regular logic does not include product types.

44

That is, the syntax does not permit the construction of a type A x B from two basic types
A and B. This mismatch is, however, not fatal because products are smuggled into the
logical system as contexts: a context (z : A, y : B) amounts to a single variable of type
A x B. Adding a second monoidal product puts this device under considerable strain.
One could conceivably extend the syntax of a context to represent a fully “destructured”
element of arbitrary compound type. A better solution is to augment the logical language
with product types A x B and sum types A + B, as well as a unit (singleton) type 1 and
zero (empty) type 0. The role of contexts is downplayed accordingly.

Product and sum types are ubiquitous in programming language theory. The simply
typed lambda calculus is often treated with product and sum types, in both classical
and categorical settings [Sell3; [LS88]. By contrast, first-order logics with non-trivial
type systems are rare. A proof system for first-order logic with product and sum types
does not, to our knowledge, appear in the literature. We now present such a system,
straightforwardly adapted from the lambda calculus. As in Section [§] the treatment here
is informal. Details and proofs are deferred to Appendix [B]

Remark. A clarification may be helpful to readers acquainted with the Curry-Howard
correspondence [How80; [Wad15]. The interpretation of types as propositions, and programs
as proofs, is the subject of a large body of research. However, we are interested in types
with logic, not types as logic. The former is sometimes called “two-level type theory.” An
example is Gambino and Aczel’s “logic-enriched type theory,” a system of first-order logic
with dependent types [GAO0G].

By using a non-trivial type system, we commit ourselves to a proper treatment of terms.
In Section [§ we did not bother to distinguish the “terms” of regular logic, which are just
typed variables x : A. We now formally distinguish two kinds of expressions in context:
formulas (also called propositions) and terms. As before, the formulas are generated by
the equality relation, relation symbols, and logical connectives. The terms are generated
by variables, function symbols, and term constructors for the product and sum types.

The term constructors are familiar from typed lambda calculus. Given a term ¢t : A X B,
there are projection terms m(t) : A and my(t) : B, and given two terms ¢ : A and s : B,
there is a pair term (t,s) : A x B. Dually, given terms ¢t : A and s : B, there are inclusion
terms ¢1(t) : A+ B and 13(s) : A+ B, and given terms ¢t : A+ B, r: C, s: C, there is a
copair term § (t,x : A.r,y : B.s) : C. The copair term, or “case statement,” is interpreted
as follows. If £ : A+ B is a value of type A, return the term r with variable x replaced by
t. If t : A+ B is a value of type B, return the term s with variable y replaced by ¢. In
either case, the result is a value of type C.

We now sketch the correspondence between coherent logic with product and sum types
and distributive bicategories of relations. To every coherent theory T we associate the
classifying category CI(T), a distributive bicategory of relations. Its objects are the types
of T. Note the difference from Section , where the objects of CI(T) are finite lists of types.
The morphisms of CI(T) are equivalence classes of formulas in context with exactly two
free variables. The types of these variables are the domain and codomain of the morphism.
We make the classifying category into a distributive bicategory of relations analogously to

Rel (Sections 3 and [9.1).

Conversely, every small distributive bicategory of relations B has its internal language
Lang(B), a coherent theory. As before, we interpret an arbitrary formula in context

45

' | ¢ of Lang(B) as a morphism [I" | ¢] of B. The construction proceeds analogously to
Section [8] with one important addition: terms are interpreted as maps. More precisely, a
term in context I' | ¢ : A is interpreted as a morphism [I" | ¢ : A] : [I'] — [A] of Map(B).
Although the connection between terms and maps is interesting its own right, in the
present proof, the interpretation of terms as maps serves only to establish the base case
in the inductive interpretation of formulas as morphisms.

Our main result, proved in Appendix |B] is stated below.

Theorem. With respect to coherent logic with product and sum types, for every small
distributive bicategory of relations B, there is an equivlance of categories

Cl(Lang(B)) ~ B in DistBiRel.

It is also possible to realize the correspondence between regular logic and bicategories of
relations using a richer type system than in Section [§ The appropriate logic is regular
logic with product types and a singleton type (but not sum types or an empty type).

Theorem. With respect to reqular logic with product types, for every small bicategory of
relations B, there is an equivalence of categories

Cl(Lang(B)) ~ B in BiRel

10. Conclusion and outlook

In this paper, we have propounded a categorical framework for knowledge representation
centered around bicategories of relations. We emphasized three important features that
emerge automatically from category theory: instance data, types, and graphical syntax.
We compared our framework informally to description logic and formally to the regular
and coherent fragments of typed first-order logic. In this final section, we offer a general
perspective on categorical knowledge representation. We also suggest directions for future
research.

We have extensively discussed the relationship between the algebraic and logical approaches
to knowledge representation, but have said comparatively little about how the two
categorical frameworks—functional and relational ologs—are related. Although a complete
answer is beyond the scope of this work, we will suggest a “pattern” or “template” for
defining categorical ontologies that is general enough to encompass these and other
frameworks. This template can perhaps serve as a first step towards a unified methodology
of categorical knowledge representation.

Doctrines are a useful organizing principle for category theory [KR77|. Informally, a
doctrine is a family of categories or higher categories with extra structure. The most
basic doctrine is the doctrine of categories (with no extra structure). There are also
doctrines of categories with finite products, of symmetric monoidal categories, of compact
closed categories, of 2-categories, of bicategories of relations, etc. Besides the categories
themselves, a doctrine specifies the relevant kind of “structure-preserving” functors, and
the natural transformations between these. The concept of doctrine can be formalized,
but for us this informal understanding is perfectly adequate.

46

Doctrine Prototype(s) Internal language

category Set

category with finite (co)limits Set

bicategory of relations Rel regular logic with product
types

distributive bicategory of relations Rel coherent logic with product
and sum types

cartesian closed category Set, CPO typed lambda calculus with
product types

bicartesian closed category Set typed lambda calculus with

product and sum types

Table 4: Selected doctrines relevant to knowledge representation

Here is a general recipe for constructing a categorical knowledge base. First, choose a
doctrine. This choice should be informed by the phenomena being modeled; we expand on
this idea below. Next, define a finitary specification language for the doctrine. As above,
the basic strategy is finite presentation, a.k.a. the method of generators and relations,
which works in considerable generality. If the doctrine supports arbitrary limits or colimits,
the method of sketches can be used instead [Wel93; Mak97]. Alternatively, if the doctrine
has as its internal language some well-known logical system, that system could serve as a
specification language. Finally, use the specification language to define an ontology. As a
mathematical object, the ontology is simply a finitely generated category of the doctrine.
Instance data for the ontology is derived from the “prototype” category of the doctrine,
such as Set or Rel, or possibly from a more exotic category.

Some doctrines relevant to knowledge representation are listed in Table |4l Functional ologs
arise from the doctrine of categories with finite limits and colimits; relational ologs from the
doctrine of bicategories of relations. The typed lambda calculus is the internal language
of the doctrine of cartesian closed categories. Besides its central role in programming
language theory, the lambda calculus has been used to model natural languages [HK98].
This list by no means exhausts the doctrines that are potentially useful for knowledge
representation.

Different doctrines are appropriate for different applications. Bicategories of relations
are designed to model classes of entities (concepts) and the relationships between them
(roles). Description logic shares this orientation. However, creating taxonomies of concepts
is hardly the only worthwhile application of knowledge representation. As an example,
the original impetus for this work was our need to model knowledge about computer
programs used in data analysis. Description logics (and relational ologs) are ill-suited
to this project; a doctrine related to the lambda calculus is much more appropriate.
In general, we worry that the mainstream of KR research has unjustifiably privileged
taxonomies over other kinds of knowledge. Our philosophy is that category theory is
a universal modeling language enabling a more expansive understanding of knowledge
representation. In the future, we hope to see practical, flexible knowledge representation
systems that allow doctrines to be rapidly assembled from the categorical toolbox to meet
the needs of particular applications.

47

There are myriad directions for future research on categorical knowledge representation.
We mention a few that are directly relevant to relational ologs.

A glaring omission in this work is any discussion of automated inference. By contrast,
computationally tractable inference has been the prime directive of the description logic
community. The first step for our project is to acknowledge that inference in a relational
olog is undecidable. This is true even without the extensions of Section [9] (One can see
this algebraically, by reduction from the word problems for monoids or groups, or logically,
by reduction from the decision problem for regular theories.)

There are two possible responses to the problem of undecidability. We could follow
the DL community in imposing language restrictions to achieve provable computational
tractability. The extensive DL literature would doubtless be very helpful in carrying out
this program. However, we worry that imposing ad hoc restrictions would do irredeemable
violence to the formalism’s elegance and expressivity. A second approach is to allow an
unrestricted language and settle for approximate inference. We share with Doyle and
Patil the opinion that this approach is undervalued by the description logic community
[DP91]. In the statistics and machine learning communities, the need for approximate
inference in complex models is an accepted fact of life. The contrast is especially stark
because inference in first-order theories is harder than inference in probabilistic models.
In any event, developing inference algorithms for relational ologs, exact or approximate,
is an important prerequisite for practical applications.

Another problem, already raised in Section [9] is to define a graphical language for
distributive bicategories of relations that is coherent, yet intuitive. (We think that proof
nets fall short on the second count.) The graphical language of string diagrams is a very
appealing feature of relational ologs. We hope that a satisfactory extension of string
diagrams to categories with multiple monoidal products will be discovered.

Acknowledgments

I thank John Baez, David Spivak, and Ryan Wisnesky for helpful comments on the
manuscript. [am grateful to Thomas Icard for his encouragement of this project. Finally,
I thank the many contributors to the nLab for creating an invaluable online resource for
aspiring and professional category theorists.

References

[ACO04] Samson Abramsky and Bob Coecke. “A categorical semantics of quantum
protocols”. Logic in Computer Science, 2004. IEEE. 2004, pp. 415-425.

[ADMO09] Jeremy Avigad, Edward Dead, and John Mumma. “A formal system for
Euclid’s Elements”. The Review of Symbolic Logic 2.4 (2009), pp. 700-768.

[AGO5] Renzo Angles and Claudio Gutierrez. “Querying RDF data from a graph
database perspective”. Furopean Semantic Web Conference. 2005, pp. 346
360.

48

[AGOS]

[AL12]

[Apals]
[Ash4-00]
[Awo09)]
[Awo10]
[Baa+07]
[BDYS
[BE15]
[BF15]
[BH94]

[BHLO1]

[BJ94]

[BKV16]
[BLO4]

[BL84|

[Blu+96]

[BM14]

[BS10]

Renzo Angles and Claudio Gutierrez. “Survey of graph database models”.
ACM Computing Surveys 40.1 (2008), p. 1.

Emilio Jesus Gallego Arias and James B. Lipton. “Logic programming in tabu-
lar allegories”. Technical Communications of the 28th International Conference
on Logic Programming (ICLP’12). Vol. 17. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2012, pp. 334-347.

Apache Software Foundation. TinkerPop3 Documentation. 2015. URL: http://
tinkerpop.apache.org/docs/current/reference/ (visited on 03/23/2017).

Michael Ashburner et al. “Gene Ontology: tool for the unification of biology”.
Nature Genetics 25.1 (2000), pp. 25-29.

Steve Awodey. “Introduction to Categorical Logic”. Lecture notes. 2009. URL:
http://www.andrew.cmu.edu/user/awodey/catlog/notes/.

Steve Awodey. Category Theory. 2nd ed. Oxford University Press, 2010.

Franz Baader, Diego Calvanese, Deborah L McGuinness, Daniele Nardi, and
Peter F Patel-Schneider, eds. The Description Logic Handbook: Theory, Im-
plementation and Applications. 2nd ed. Cambridge University Press, 2007.

John Baez and James Dolan. “Categorification”. arXiv:math/9802029 (1998).

John Baez and Jason Erbele. “Categories in control”. Theory and Applications
of Categories 30.24 (2015), pp. 836-881.

John Baez and Brendan Fong. “A compositional framework for passive linear
networks”. arXiv:1504.05625 (2015).

Carolyn Brown and Graham Hutton. “Categories, allegories and circuit design”.
Logic in Computer Science, 1994. LICS’94. IEEE. 1994, pp. 372-381.

Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic Web”.
Scientific American 284.5 (2001), pp. 28-37.

Carolyn Brown and Alan Jeffrey. “Allegories of circuits”. International Sym-
posium on Logical Foundations of Computer Science. Springer. 1994, pp. 56—
68.

Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. “Globular: an online proof
assistant for higher-dimensional rewriting”. arXiv:1612.01093 (2016).

Ronald Brachman and Hector Levesque. Knowledge Representation and Rea-
soning. Elsevier, 2004.

Ronald Brachman and Hector Levesque. “The tractability of subsumption
in frame-based description languages”. AAAI-84 Proceedings. AAAI. 1984,
pp. 34-37.

Richard F Blute, J Robin B Cockett, Robert A G Seely, and Todd H Trimble.
“Natural deduction and coherence for weakly distributive categories”. Journal
of Pure and Applied Algebra 113.3 (1996), pp. 229-296.

Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.99. 2014.
URL: http://xmlns.com/foaf/spec/20140114 . .html.

John Baez and Mike Stay. “Physics, topology, logic and computation: a Rosetta
Stone”. New Structures for Physics. Springer, 2010, pp. 95-172.

49

http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/
http://www.andrew.cmu.edu/user/awodey/catlog/notes/
http://xmlns.com/foaf/spec/20140114.html

[BSZ14]

[But9s]

[Car+08]

[Car86]

[CLW93]

[Cod70]
[CP10]

[Cro93|
[CW8T]

[DPY1]

[DV10]

[FDBO6]

[Fre72]
[Fri12]

[FS90]
[GAO6]

[Gal+93]

(GG16]

Filippo Bonchi, Pawet Sobocinski, and Fabio Zanasi. “A categorical semantics
of signal flow graphs”. International Conference on Concurrency Theory
(CONCUR 2014). 2014, pp. 435-450.

Carsten Butz. “Regular categories and regular logic”. BRICS Lecture Series
LS-98-2 (1998).

Aurelio Carboni, G Max Kelly, Robert FC Walters, and Richard J Wood.
“Cartesian bicategories 11”. Theory and Applications of Categories 19.6 (2008),
pp- 93-124.

John Cartmell. “Generalised algebraic theories and contextual categories”.
Annals of Pure and Applied Logic 32 (1986), pp. 209-243.

Aurelio Carboni, Stephen Lack, and Robert FC Walters. “Introduction to
extensive and distributive categories”. Journal of Pure and Applied Algebra
84.2 (1993), pp. 145-158.

Edgar F Codd. “A relational model of data for large shared data banks”.
Communications of the ACM 13.6 (1970), pp. 377-387.

Bob Coecke and Eric Oliver Paquette. “Categories for the practising physicist”.
New Structures for Physics. Springer, 2010, pp. 173-286.

Roy L Crole. Categories for Types. Cambridge University Press, 1993.

Aurelio Carboni and Robert FC Walters. “Cartesian bicategories 1”. Journal
of Pure and Applied Algebra 49.1-2 (1987), pp. 11-32.

Jon Doyle and Ramesh S Patil. “Two theses of knowledge representation:
Language restrictions, taxonomic classification, and the utility of representation
services”. Artificial intelligence 48.3 (1991), pp. 261-297.

Ian Davis and Eric Vitiello Jr. RELATIONSHIP: A vocabulary for describing
relationships between people. 2010. URL: http://vocab.org/relationship/.

Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. “Remarks on isomor-
phisms in typed lambda calculi with empty and sum types”. Annals of Pure
and Applied Logic 141.1-2 (2006), pp. 35-50.

Peter Freyd. “Aspects of topoi”. Bulletin of the Australian Mathematical
Society 7.1 (1972), pp. 1-76.

Bernard Friedland. Control system design: an introduction to state-space
methods. Courier Dover Publications, 2012.

Peter J Freyd and Andre Scedrov. Categories, Allegories. Elsevier, 1990.

Nicola Gambino and Peter Aczel. “The generalised type-theoretic interpre-
tation of constructive set theory”. Journal of Symbolic Logic (2006), pp. 67—
103.

Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. “Directed
hypergraphs and applications”. Discrete Applied Mathematics 42.2 (1993),
pp. 177-201.

M Ganesalingam and W T Gowers. “A fully automatic theorem prover with
human-style output”. Journal of Automated Reasoning (2016), pp. 1-39.

50

http://vocab.org/relationship/

[Gir87]

[Gra+08|

[Har09]

[HKO8]
[HKROY]
[HKS05]

[HKS06]

[Hou0g]

[HowS80]

[HV12]
[Jac9s]
[Jac9]
[Jay93]
[Joh02]

[KAH11]

[KN94]
[Koc04]

[KR77]

Jean-Yves Girard. “Linear logic”. Theoretical Computer Science 50.1 (1987),
pp. 1-101.

Bernardo Cuenca Grau, lan Horrocks, Boris Motik, Bijan Parsia, Peter Patel-
Schneider, and Ulrike Sattler. “OWL 2: The next step for OWL”. Web Se-
mantics: Science, Services and Agents on the World Wide Web 6.4 (2008),
pp. 309-322.

John Harding. “A link between quantum logic and categorical quantum me-
chanics”. International Journal of Theoretical Physics 48.3 (2009), pp. 769—
802.

Irene Heim and Angelika Kratzer. Semantics in generative grammar. Blackwell,
1998.

Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of
Semantic Web Technologies. CRC Press, 2009.

Ian Horrocks, Oliver Kutz, and Ulrike Sattler. “The irresistible SHZ Q”. Proc.
of OWL: Ezperiences and Directions. 2005.

Ian Horrocks, Oliver Kutz, and Ulrike Sattler. “The even more irresistible
SROIQ”. Proc. 10th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’06). AAAI, 2006, pp. 57—67.

Robin Houston. “Finite products are biproducts in a compact closed category”.
Journal of Pure and Applied Algebra 212.2 (2008), pp. 394-400.

William A Howard. “The formulae-as-types notion of construction”. To H.B.
Curry: Essays on combinatory logic, lambda calculus and formalism 44 (1980),
pp- 479-490.

Chris Heunen and Jamie Vicary. Lectures on categorical quantum mechanics.
Computer Science Department, Oxford University. 2012.

Bart Jacobs. “Parameters and parametrization in specification, using distribu-
tive categories”. Fundamenta informaticae 24.3 (1995), pp. 209-250.

Bart Jacobs. Categorical logic and type theory. Vol. 141. Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

C Barry Jay. “Tail recursion through universal invariants”. Theoretical Com-
puter Science 115.1 (1993), pp. 151-189.

Peter T Johnstone. Sketches of an elephant: A topos theory compendium. 2 vols.
Oxford University Press, 2002.

Matthias Knorr, José Julio Alferes, and Pascal Hitzler. “Local closed world
reasoning with description logics under the well-founded semantics”. Artificial
Intelligence 175.9-10 (2011), pp. 1528-1554.

Petrus Knijnenburg and Frank Nordemann. Two Categories of Relations. Tech.
rep. 94-32. Leiden University, Department of Computer Science, 1994.

Joachim Kock. Frobenius algebras and 2-d topological quantum field theories.
Cambridge University Press, 2004.

Anders Kock and Gonzalo Reyes. “Doctrines in categorical logic”. Handbook
of Mathematical Logic. Ed. by Jon Barwise. North Holland, 1977.

51

[KSH12]

[KZ15]

[Lac10]
[Law15]
[Law63]
[Leil4]
[LS09]
[LS88]
[Mac63]
[Mac9g]
[Mah16]

[Mak97]

Mim14]
[Mus15]

[Nic+16]

Nie12]
[Noy+09]
[00s95]

[Pat17]

Markus Krotzsch, Frantisek Simancik, and Ian Horrocks. “A description logic
primer”. arXiw:1201.4089 (2012).

Aleks Kissinger and Vladimir Zamdzhiev. “Quantomatic: A proof assistant for
diagrammatic reasoning”. International Conference on Automated Deduction.
Springer. 2015, pp. 326-336.

Stephen Lack. “A 2-categories companion”. Towards higher categories. 2010,
pp. 105-191.

Finn Lawler. “Fibrations of predicates and bicategories of relations”. arXiv:1502.08017
(2015).

F. William Lawvere. “Functorial Semantics of Algebraic Theories”. PhD thesis.
Columbia University, 1963.

Tom Leinster. Basic category theory. Vol. 143. Cambridge University Press,
2014.

F William Lawvere and Stephen H Schanuel. Conceptual mathematics: a first
introduction to categories. 2nd ed. Cambridge University Press, 2009.

Joachim Lambek and Philip J Scott. Introduction to higher-order categorical
logic. Cambridge University Press, 1988.

Saunders Mac Lane. “Natural associativity and commutativity”. Rice Univer-
sity Studies 49.4 (1963), pp. 28-46.

Saunders Mac Lane. Categories for the working mathematician. 2nd ed. Vol. 5.
Graduate Texts in Mathematics. Springer-Verlag, 1998.

Michael Mahoney. “Lecture notes on spectral graph methods”. arXiv:1608.04845
(2016).

Michael Makkai. “Generalized sketches as a framework for completeness
theorems. Part 17. Journal of Pure and Applied Algebra 115.1 (1997), pp. 49—
79.

Samuel Mimram. “Towards 3-dimensional rewriting theory”. arXiv:1403.4094
(2014).

Mark A Musen. “The Protégé project: A look back and a look forward”. Al
Matters 1.4 (2015), pp. 4-12.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. “A
review of relational machine learning for knowledge graphs”. Proceedings of
the IEEE 104.1 (2016), pp. 11-33.

Michael Nielsen. Reinventing Discovery: The New Era of Networked Science.
Princeton University Press, 2012.

Natalya F Noy et al. “BioPortal: ontologies and integrated data resources at
the click of a mouse”. Nucleic Acids Research (2009).

Jaap van Oosten. “Basic Category Theory”. BRICS Lecture Series LS-95-1
(1995).

Evan Patterson. epatters/Catlab: An experimental library for computational
category theory. Apr. 2017. DOI: 10.5281/zenodo . 569966.

52

https://doi.org/10.5281/zenodo.569966

[Pit95]

[PS08]

[PS97]

[RB11]
[Rei78]
[Riel6]
[RN10]
[Sch+16]

[Sel07]

[Sel10]
[Sel13]
[Sel99]
[SK12]

[SKH11]

[Spil2]

[Spil4]
[Sto+14]

[SW15]

Andrew Pitts. Categorical logic. Tech. rep. University of Cambridge, Computer
Laboratory, 1995.

Eric Prud’hommeaux and Andy Seaborne, eds. SPARQL Query Language for
RDF. World Wide Web Consortium (W3C). 2008. URL: https://www.w3.
org/TR/rdf-sparql-query/.

Frank Piessens and Eric Steegmans. “Proving semantical equivalence of data
specifications”. Journal of Pure and Applied Algebra 116.1-3 (1997), pp. 291—
322.

Peter N Robinson and Sebastian Bauer. Introduction to bio-ontologies. CRC
Press, 2011.

Raymond Reiter. “On closed world data bases”. Logic and data bases. Springer,
1978, pp. H5-76.

Emily Riehl. Category theory in context. Dover, 2016.

Marko A Rodriguez and Peter Neubauer. “Constructions from dots and lines”.
Bulletin of the American Society for Information Science and Technology 36.6
(2010), pp. 35-41.

Patrick Schultz, David I Spivak, Christina Vasilakopoulou, and Ryan Wisnesky.
“Algebraic databases”. arXiv:1602.03501 (2016).

Peter Selinger. “Dagger compact closed categories and completely positive
maps”. Electronic Notes in Theoretical Computer Science 170 (2007), pp. 139
163.

Peter Selinger. “A survey of graphical languages for monoidal categories”. New
Structures for Physics. Springer, 2010, pp. 289-355.

Peter Selinger. “Lecture notes on the lambda calculus”. arXiv:0804.3434
(2013).

Peter Selinger. “Categorical structure of asynchrony”. Electronic Notes in
Theoretical Computer Science 20 (1999), pp. 158-181.

David I Spivak and Robert E Kent. “Ologs: a categorical framework for
knowledge representation”. PLoS One 7.1 (2012).

Kunal Sengupta, Adila Alfa Krisnadhi, and Pascal Hitzler. “Local closed world
semantics: Grounded circumscription for OWL”. International Semantic Web
Conference. Springer. 2011, pp. 617-632.

David I Spivak. “Functorial data migration”. Information and Computation
217 (2012), pp. 31-51.

David I Spivak. Category theory for the sciences. MIT Press, 2014.

Sana Stojanovi¢, Julien Narboux, Marc Bezem, and Predrag Janici¢. “A ver-
nacular for coherent logic”. International Conference on Intelligent Computer
Mathematics. Springer. 2014, pp. 388-403.

David I Spivak and Ryan Wisnesky. “Relational foundations for functorial data
migration”. Proceedings of the 15th Symposium on Database Programming
Languages. ACM. 2015, pp. 21-28.

33

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

[TG&7] Alfred Tarski and Steven Givant. A formalization of set theory without variables.
Vol. 41. American Mathematical Society, 1987.

[Wad15] Philip Wadler. “Propositions as types”. Communications of the ACM 58.12
(2015), pp. 75-84.

[Wel93] Charles Wells. “Sketches: Outline with References”. With 2009 addendum. 1993.
URL: http://www.cwru.edu/artsci/math/wells/pub/pdf/Sketch.pdf.

[Woo75] William A Woods. “What’s in a link: Foundations for semantic networks”.
Representation and Understanding: Studies in Cognitive Science (1975), pp. 35—
82.

[ZMS13] Bartosz Zielifiski, Pawel Maglanka, and Scibor Sobieski. “ Allegories for database
modeling”. International Conference on Model and Data Engineering. Springer.
2013, pp. 278-289.

A. Regular logic and bicategories of relations

The objective of this appendix to state carefully and prove the theorem of Section [§]
establishing a correspondence between regular logic and bicategories of relations. The
development will be detailed yet terse, as we have already explained the main ideas behind
the theorem in Section [§

We first define a formal system for regular logic. The syntax is borrowed from |[Awo09)
and the proof system from [Joh02]. We depart from the standard formulation of regular
logic only by dispensing with function symbols. This convention is merely a convenience;
Appendix [B] shows how to incorporate function symbols.

Definition. A (multisorted) signature consists of
e a set of sorts or basic types, which we write generically as A, B, Ay, By, ..., and
e a set of relation symbols, which we write as R, S, ..., where each relation symbol R
is associated with a (possibly empty) ordered list of types (A, ..., A,).

For brevity, we often use the vector notation A := (Ay,..., A,). To express that relation
symbol R has types A, we write R: Aor R: (Ay,...,A,).

There is a countably infinite set of wvariables x,y, z,.... Unlike in some typed logical
calculi, the variable symbols do not have fixed types. Instead, we write x : A to express
that x is a variable of type A. A context is a (possibly empty) finite, ordered list of form

F=xz:A=(x1:A,...,2,: Ap),

where the x;’s are distinct variables and the A;’s are basic types.

With respect to a fixed signature, the formulas in context of the regular language are
expressions of form I' |, where I is a context and ¢ is a formula, as defined inductively by
the formation rules in Figure [I Formulas outside of a context have no definite meaning.
Note that the only terms in context of the regular language are variables, for which there
is a single formation rule:

Le: AT |z A

o4

http://www.cwru.edu/artsci/math/wells/pub/pdf/Sketch.pdf

Fll’liAl F‘l’nAn

(relation symbol R : A)

U'|R(xy,...,z,)
Iz:A My:A
@ ly (equality)
Mz=y
r
_Tle (weakening)
Coz: Al
I (truth)
r r
i v (conjunction)
Cleny
Ix: A
Lz:dle (existential quantifier)
['3z: Ay

Figure 1: Formation rules for regular logic

ok (identity)

ok x X F

(cut)
pkab
z:Alptd I'[t:A o
T [olt/z] - olt/z] (substitution)
pre=z (z=y) Aok ply/z] (equality)
kT (truth)
oy PX OoANYE @ OoANYEY (conjunction)

PP AX
Dx:Alpk

['|(3x:Ap)-9

(existential quantifier)

CloAN@z:AY) Tz A(p AY) [z ¢ T (Frobenius)

Figure 2: Inference rules for regular logic

35

A sequent is an expression of form I' | ¢ - ¢, where ' | ¢ and T" | ¢ are both formulas in
context. The inference rules for sequents are listed in Figure [2|

The statement of the inference rules assumes the following notational conventions. Contexts
that are constant across the premises and conclusion of a rule are omitted. The formulas
in context appearing in the rules are implicitly assumed to be well-formed. For example,
the existential quantifier rule assumes that x does not appear freely in ¢ because I' | ¢
must be well-formed. The vector notation x = y is shorthand for 1 =y A--- Az, = yy;
likewise, 3z : A is shorthand for 3xq : Ay --- 3w, : A,. The expression ¢[y/z]| denotes the
simultaneous substitution of y; for x;, for 1 <i < n, in the formula .

Remark. Several inference rules deserve further comment.
o Substitution: Useful special cases of the substitution rule include the weakening and
strengthening rules

ClokFy Cox:Alpk Ljt: A
Faz:Alpkd LlpkEvy ‘

e Fuxistential quantifier: Given the other rules, the bidirectional existential quantifier
rule is equivalent to the 3-introduction and 3-elimination rules [Jac99, Lemma 4.1.8]

I'jt:A I'|pFylt/x] I'fpkF3z: Ay Fx:AlyFx
ok 3dz: Ay ek x '

e Frobenius: The so-called “Frobenius axiom,” linking conjunction and existential
quantification, is superfluous in full first-order logic with implication but is not
deducible from the other rules of regular logic [Joh02, p. 831]. The converse rule
is deducible [Joh02, p. 832]. The omission of the Frobenius rule in some standard
texts on regular logic, such as |[O0s95] and [But98|, is apparently an error.

Definition. A reqular theory (with respect to a fixed signature) is defined by a set of
sequents in the signature, not necessarily finite, called the azxioms of theory. Under a
regular theory T, a formula ¢ entails v, written T" | ¢ bp 1), if the sequent T' | ¢ F 1) is
deducible from the axioms of T using the inference rules of regular logic (Figure . In
this case we say that the sequent I' | ¢ - 9 is an entailment or theorem of T.

We now begin to establish the correspondence between bicategories of relations and regular
logic by constructing the classifying category of a regular theory.

Definition. The classifying category of a regular theory T, denoted CI(T), is the bicategory
of relations defined as follows. Its objects are finite lists of basic types A : (A4y,..., 4,).
Given a context I' = z : A, we also write [I'] := A. Its morphisms A — B are equivalence
classes of formulas in context,

[z: Ay Bl

where the equivalence relation ~ is defined by
(z:Ay:Ble)~ (@ Ay :Bly) i z:Ay:Bledr¢z/ry/y]

In other words, the morphisms of CI(T) are formulas in context up to a-equivalence and
logical equivalence under T. Here -1 is shorthand for -t and r, and the semicolon in
a context (I';IV) is an extralogical marker that partitions the context into the domain

56

[I'] and codomain [I'] of the morphism [I;I” | ¢|. The 2-morphisms of CI(T) are the
entailments of T:

O] = [y i DI [ekpe.

We now define the requisite structures to make the classifying category into a bicategory
of relations. Composition of morphisms is given by

[Ay Bl [y Biz:ClY]=[z:A;2:C|Jy: B.p Ay,
and the identity morphisms are
la=z:
The monoidal product is defined on objects by A ® B := (A, B) and on morphisms by
DA o] @ [AT y] = [T A, A" o Ad.

The monoidal unit is the empty list I := (). The braidings are

oap=[z:Ay: By Bz Al(z=2)N(y=y)]
Finally, the diagonals are
Ap =z Asa' - Aa" Al (z=2") A (z=2")]

Oa=lz:A|T]

Lemma. The classifying category CI(T) of a reqular theory T is a bicategory of relations.

Proof. We must check that every axiom of a bicategory of relations can be deduced from
the inference rules of regular logic. The proofs are tedious but mechanical; we sketch a
few to illustrate what is involved and leave the rest to the reader.

First, we show that CI(T) is a category. To prove that composition is associative, we must
show that the two formulas

are equivalent in regular logic. In fact, both formulas are equivalent to

1=

AW

\U N
\N \@

:B.(pA3z:C.(Y Ax))
C

z:Aw: (Fy: B(p AY) A X)

z:Aw:D|Jy:BIz:C(p AP AX).

The derivation relies crucially on the Frobenius rule. We omit the details and the proof of
the identity axiom of a category.

Next, we prove that CI(T) is a locally posetal 2-category. It is obvious that CI(T) is
locally posetal. The vertical composition axiom is immediate from the cut rule. To prove
the horizontal composition axiom, suppose we have two entailments

z:Ay:Blpk0 and y:B,z:Clykx.

o7

By the conjunction and weakening rules,
z:Ay:Bz:CloANypEOANX.
Using the J-introduction rule and then the bidirectional 3-rule, we obtain
z:A4,z2:C|3y:BleAy) 3y : B.(OAX),

proving the validity of horizontal composition.

The axiom on lax comonoid homomorphisms amounts to two easily proved entailments,
namely

z: Ay By B3y :BeAy=y)ANy=y")Fely/yl Aely"/y]

and
z:A|Jy:BpkT.

Finally, we mention that the adjoints of A4 and ¢4 exist and are equal to

Vo= Aa" Az Al (@' =2)AN (2" =2)] and Op:i=[z:

Next, we construct the internal language of a bicategory of relations. A preliminary
definition is:

Definition. An interpretation or model of a signature in a bicategory of relations B is
specified by
e for every basic type A, an object [A] of B;
e for every relation symbol R : A, a morphism [R] : [A] — I of B, where we define
[4] = [A] ® - @ [4.].

IfI' =2 : Ais a context, we also write [['] := [A].

An interpretation of a signature extends to the full regular language in that signature. By

induction on the formation rules of regular logic (Figure [I)), we assign to each formula

in context I',T" | ¢ a morphism [[';T | ¢] : [I'] — [I'] of B. In interpreting a rule, we

allow ourselves to order the context variables and place the context semicolon however is

most convenient, with the understanding that any other arrangement can be achieved by

a suitable braiding and bending of wires. This flexibility greatly simplifies the notation.
e Relation symbol: Given a relation symbol R : A,

[z: AT [R(2)] = [R] ® Ory-
e Fquality: There are two cases: when the variables are distinct, set
[T,z Ay Alz=y] == Oy ® 1pap;
when the variables are equal, set
'z =z] = Opry.
o Weakening: Given a morphism [I" | ¢] : [I'] — 1,

[T,z Ale] =T o] ® Opap-

28

o Truth: [T;T | T] == Ty = OBy
e Conjunction: Given morphisms [I;IV | ¢] : [I] — [I'] and [I; I | 4] : [T] — [I],

O o A = Apry - ([T T [o] @ [T [¥]) - Vi
e FEzistential quantifier: Given a morphism [[';z: A | ¢] : [I'] — [A],
[T 3x:Ap] = [Ts2: Al¢] - Qpap-

Definition. An interpretation [[-] of the signature of a regular theory T in a bicategory
of relations B is an interpretation or model of T in B if it satisfies all the axioms of T, i.e,
for every axiom

ey of T,

there is a 2-morphism
[Tl¢] = [I'[¢] in B.

The previous lemma can be interpreted as a completeness theorem, stating that the
inference rules of regular logic are sufficient to prove every axiom of a bicategory of
relations. The next lemma is a soundness theorem: it says that every inference rule of
regular logic is valid in an arbitrary bicategory of relations.

Lemma. Let [-] be an interpretation of a reqular theory T in a bicategory of relations B.
For every theorem

U'lobry of T,
there is a 2-morphism
[Tl = [I'[v] in B

Proof. The proof is by induction on the derivation of a theorem of T. By the definition of
an interpretation, every axiom of T holds in B. Therefore, it suffices to show that every
inference rule of regular logic (Figure [2)) is valid in B. We sketch these proofs below.

o Identity: Existence of identity 2-morphism.

e (Cut: Vertical composition of 2-morphisms.

o Substitution: Omitted.

e Fquality: Omitted.

e Truth: By the lax comonoid homomorphism axiom,

[Clel =1 1el-0r = Oy =1[T[T].
o Conjunction: If [I;TV |] = [TV | 9] and [T |] = [T | x], then
[T] = App(I55 T] @ [T5 1]) Vi
= Arp(I5; T 9] @ [T T XD Vi
=[5 [AX]
That proves the first conjunction rule. For the second, calculate
[T e A Y] = Apg([T5 T [@] @ [T T [¢]) Vi
= Ay ([T T 1] ® OOy Vi
=[5]] -

The proof of the third rule is similar.

39

e FEzistential quantifier: Fix formulas [I;z: A|¢] : [I'] — [A] and [T |] : [T] — 1.
By the weakening formation rule, [I';z: A|v¢] = [I'| 9] - Opap. If there is an
entailment [z : A|] = [[2: A|], then

[[']3z: Ap] =[5z Al @] Ora
= [52: A Y] Opa
= [T [¥] OpagOpay
= [I'|¥].

The proof of the converse rule is similar.
o Frobenius: Given formulas [I" | ¢] : [I'] — I and [I',z: A|¢] : [I'] — [A], compute

[T oA @z: Ad)] = AT [] ® [I'] 3z : Ag])
=Ar([T' el ® [z A 9] Opap)
= Ar([T' [0] Opay @ [Tz : A[4]) V4 Opag
=Apry([T,z: Al p] @ [T,z A Y])ViaOpa
= [z Al AyY] O
=[I'|3x: A(eADY)]. O

Definition. The internal language of a small bicategory of relations B is the regular
theory Lang(B) defined as follows. Its signature consists of

e a basic type A for every object A of B, and

e a relation symbol R : (Ay,..., A,) for every morphism R: A, ® --- ® A,, — I of B.

A sequent I'| ¢ F 4 is an axiom of Lang(B) if and only if [I' | ¢] = [I"| ¥] in B, where

[-] is the obvious interpretation of the signature of Lang(B) in B.

By the lemma, Lang(B) is interpretable in B and the theorems of Lang(B) are exactly
the 2-morphism of B.

Remark. In general, a single morphism of B gives rise to many relation symbols of Lang(B),
e.g., if R: A — I is morphism and A = A; ® A,, then there are relation symbols R : (A)
and R : (A1, Ay).

We have now developed the machinery to state and prove the main theorem of Section [§]

Theorem. For every small bicategory of relations B, there is an equivalence of categories

Cl(Lang(B)) ~ B in BiRel

Proof. To prove the equivalence, it suffices to construct a structure-preserving functor
F : Cl(Lang(B)) — B that is full, faithful, and essentially surjective on objects [Riel6,
Theorem 1.5.9]. Define the functor F' on objects by

FA)=[A]=[A]l®---@[A],

where A = (A4,...,A,) and each A; is a basic type of Lang(B). If ' = x : A is a context,
we also write F'(T') := [I']. Define F' on morphisms [[';T" | ¢] : [I'] — [IV] by

F(I5 T @) =[50 [] - F(T) = F(I).

60

By the construction of the classifying category and the internal language, we have the
fundamental equivalence

;T | @] = [T | 4] in Cl(Lang(B)) iff T,T" | @ Frang(s) ¢
iff [T;T | o] = [T;T | ¢] in B.

In particular, the functor F'is well-defined and faithful. It is full because if R : A — B is
a morphism of B, then there exists a relation symbol R : (A, B) of Lang(B) such that
F([z: A;y: B| R(z,y)]) = R. Clearly, F is (essentially) surjective on objects.

It remains to prove that F' is a structure-preserving functor. The fundamental equivalence
says that F' preserves 2-morphisms. We must show that F' also preserves composition,
identities, monoidal products, and all the other structures of a bicategory of relations.
We prove that I’ preserves composition and products of morphisms and omit the other
straightforward verifications. First, given morphisms [z : A;y : B|¢] and [y : B;z: C|]
of Cl(Lang(B)), calculate

F(lz: Asy: Blol-ly: B;z: C|¢])
= F(lz: 42:C |3y : B.(p AY)))
= [[Q:A;gzgﬁg:ﬁ.(ga/\lp)]]
= (g ®mar) [z: A,2: Ciy: Blo AY] O
=y ®me([z: Ay : Blo] ® [2: Ciy: Bl Y]) Vs Qs
= (L ®men)(Jz: Ay :Blo] ® [y:Biz: C] e

=[z:Ay:Bly¢] Jy:B;z:C| Y]
= F(lz: Ajy:Blg)) - F(ly:B;z: C[¢]).

Given morphisms [z : A;y : B|] and [z : C;w : D |], calculate

Flz: Ajy:Ble]®[z: Ciw: D[Y])
=F(z:4A,2:Cy: Bw: Do AY])
=[z:Az:Ciy:Bw:D|pA]]
=Auo)([z:Az2:Ciy:Bw:D|p]|®[z:Az:Ciy:B,w:D|¢])Vpp)
=(Aa®AC)(1a®oac®10)
(Jz:Ay:Blo] ®0c0p®@0a0p® [2: C;w: D|y])
(lp®0opp®1p)(VE®Vp)
= (Aa®Ag)([z: Ay : Bl ¢] ® 040p® OcOp @ [2: C;w: D[4])(Ve® Vp)
=z:Ay:Ble]|®[z:Ciw: D|y]
=F(z: 4y:Blye)) @ F(lz: Ciw: D[Y]).

The first calculation is obscured by the wire bending needed to unpack the definitions,
but becomes transparent when rendered as a string diagram. O]

Remark. The inverse functor G : B — Cl(Lang(B)) in the equivalence is defined on
objects by G(A) := A and on morphisms R: A — B by G(R) := [z : A;y: B| R(z,y)].
As an alternate proof, it is possible to explicitly construct the natural isomorphisms
F-G= 1Cl(Lang(B)) and G- F = 13.

61

B. Coherent logic and distributive bicategories of
relations

In this appendix we prove the main theorem of Section establishing a correspondence
between coherent logic with product and sum types and distributive bicategories of
relations. We present the logical system carefully because we cannot find a comparable
logic in the literature. However, where the proof overlaps with Appendix [A], we provide
less detail.

We first define a formal system for coherent logic with product and sum types. For the
sake of brevity, we refer to this system simply as “coherent logic.” We maintain the
syntactic conventions of Appendix [A] including the vector notation. Our proof system is
an amalgamation of the usual proof systems for typed lambda calculus [Jac99; FDBOG|
and coherent logic [Joh02] but with several important differences that we shall point
out.

Definition (cf. [Jac95; |Jac99]). A distributive signature consists of
e a set of basic types, which generates a set of types according to the BNF grammar

AB:=C|AxB|1]|A+B]|0,

where C' ranges over basic types;

e a set of function symbols f, g, h, ..., each with fixed domain type A and codomain
type B, written f : A — B;

e a set of relation symbols R, S, ..., each with fixed domain types A and B, written
R: (A, B).

Variables and contexts are defined as in Appendix [A] With respect to a fixed distributive
signature, a term in context is an expression of form I'|¢ : A, as defined inductively by the
formation rules in Figure . Likewise, a formula in context is an expression I' | ¢ defined
by the formation rules in Figure [4]

A sequent is an expression I' | ¢ F ¢, where T' | ¢ and T' | ¢ are both formulas in context.
The sequent I' - ¢ is shorthand for I' | T + ¢. The inference rules for sequents are listed
in Figure f] As before, we omit the context when it is the same in the premises and
conclusion of a rule.

Remark. We comment on the inference rules that differ from both first-order logic and
equational type theory. Most importantly, product types are treated exactly as in type
theory but sum types have a stronger axiomatization.

e Distributivity: Like the Frobenius rule, the distributivity axiom linking conjunction
and disjunction is superfluous in full first-order logic but is not deducible from the
other rules of coherent logic [Joh02, p. 831]. The converse of the distributivity axiom
is deducible.

e (Case: Our case rules cannot be expressed in simple type theory. Instead, type
theory postulates

Fo(t,z: As[u(x)/z2],y : B.s[a(y)/z]) = s[t/z].

Given the other axioms, this rule can be deduced from our first case rule but not
conversely.

62

Do AT |z A (variable)

Lit: A
m (funCtiOn SbfmbOlfA—}B)
L|t:A I'ls:B -
air
F’<t73>:AXB p
I't:AxB T'|t:AxB _—
rojection
[m(t) - A T |m(t): B Proj
Hlet (singleton)
I'|t:A+B D,z Alr:C Ly:Bls:C -
case
L'l §(t,x:Ar,y:Bs):C
L|t:A Tit:B o
(inclusion)

Ulu(t): A+ B ['|w(t): A+ B

Figure 3: Formation rules for terms of coherent logic

L'jt:A I'ls:B

(relation symbol R : (A, B))

T'| R(t,s)
rie: A I'ls: A
] E (equality)
['t=s
r
(weakening)
Coz: Al
r|T (truth)
rlL (falsity)
I r
K% K (conjunction)
CloAy
r r
K K (disjunction)
eV
Nxz: A
’SC—W (existential quantifier)
[3z:Agp

Figure 4: Formation rules for formulas of coherent logic

63

e Empty: In simple type theory, the empty type is axiomatized by an empty function
1 4 : A obeying the formation and inference rules

t:0 t:0 s A
J_A(t):A I—J_A(t):S

In particular, one can derive I,z : 0 | r = s for any terms 7, s. We strengthen that
result to I,z : 0| L and discard the empty function L 4.

A coherent theory is defined analogously to a regular theory.

Definition. The classifying category of a coherent theory T, denoted CI(T), is the
distributive bicategory of relations whose objects are the types of T (basic or compound);
whose morphisms A — B are equivalence classes of formulas in context [z : A,y : B | ¢],
where equivalence is up to a-equivalence and provable logical equivalence under T; and
whose 2-morphisms are the theorems of T.

The structures of a distributive bicategory of relations are defined as follows.
e Category: Composition is defined by

[x: Ay :Bly|-ly:B,z:C|¢Y]:=[x:Az:C|Jy: B A)]
and the identity morphisms are 14 := [z : A,2’ : A|z = 2/].
e Tensor: On objects, A® B := A x B and [:= 1; on morphisms,
(21 Ayyn : Bi | @) ® w21 Ag, e+ By | Y]
=[x : A X Ay,y: By X By |
dzy 0 A1 3y Br.(p Amx = a1 Amy = yi)A
Jzo 1 Ay Fys : Bo. (Y A mox = x9 A oy =)]
=[x: Ay X Ag,y: By X By | plmax/xy, my/ys] A lmex/xe, oy /ys]].
The braidings are
oap =[r:AXB,y: BxA|(mz=my) A (mx =my).
e (Cotensor: On objects, A® B := A+ B and O := 0; on morphisms,

[z1: Avyn : Bi | @] @ [w2 0 Az, 92 By | V]
=[r: A+ Ay y: Bi+ By
dry: A1 3y Bi(e Avzy =x Auyr = y)V
dxo 1 Ag.Tys : Bo.(V A tag = x A Lays = 1))
The braidings are
oap:=[r:A+B,y: B+ A|
A’ ATy B((nx' =x AN =y)V (Y =xAuy =y)))|.

e Diagonals and codiagonals:

Ay=[r:Ay: AxA|(x,x) =1
Qai=[z:Ay:1|T]

Vo= A+ Ay Al §(x,x1: Axy, 201 Axg) =y
WM, =[z:0,y:A|L].

64

ok (identity)

ok x X F

Py (cut)
z:Alph v I'[t:A L
T olt/a] - olt/z] (substitution)
Fe=z (z=y)hetply/z] z=ykHt=tly/z] (equality)
Fm((t,s) =t o ((t,s)) = s (projection)
= (m(t), mo(t)) =t (pair)
Fo(u(t),x: Aryy: B.s) =rt/z] lusi
F o (e2(t),x: Aryy: B.s) = s[t/y] (inclusion)
L'l F@z:Au(r)=t)V (Jz: Bus(x) =t) P
Dl Gr: An(e) = A Gr: Bas() =) -1 LFT (case)
& ax:0| FL ingleton & t
T Fizx ,x: 0] (singleton & empty)
ok T Lk (truth & falsity)
SOF;fl_w/\S;'_X OANYE @ OoANYEY (conjunction)
(pl_g\/w}_@ii_x ok eV YoV (disjunction)
eNWVX)F(@AY)V(eAX) (distributivity)
Coe:Alpk

(existential quantifier)

L) (Jz:Ap)
CloA(Fz:Ay) T A(p A1) [z ¢ T (Frobenius)

Figure 5: Inference rules for coherent logic

65

Lemma. The classifying category CI(T) of a coherent theory T is a distributive bicategory
of relations.

The proof of the lemma is monstrously long but similar in many respects to the com-
pleteness proof in Appendix [A] To exemplify the new considerations posed by product
and sum types, we prove a different, “obvious” fact about local unions in the classifying
category. We expect this will exhaust the reader’s appetite for such calculations. We then
proceed directly to the construction of the internal language of a distributive bicategory
of relations.

Proposition. Local unions in the classifying category of a coherent theory are given by
logical disjunction:

[z:Ay:Blo|U[z:Ayy:Bly]=[z:Ay:B|lpVyl.

Proof. In an abuse of notation, we write [p] := [z : A,y : B|y] and [¢] :=[x: A,y : B|].
By definition,
[Pl U [v] = aa([p] ® [¥]) V5.

First, use the inclusion rules and the first case rule to show that

Ar=[x:Ay: A+ A|(hr=y)V (22 =y)]
Vp=[z:B+B,y:B|(z=uy)V(x=1y)).

Therefore,

(loWDVp=[r": A+ Ay:B|3y : B+ B.(
((Fz: A3y : Belg/yl Az =2"ANug=1y))V
(Fz: A3g: B.(Y[g/y] N ox = 2" Ao =y)))
Ay =uyVy' =wy))l.
Use the Frobenius rule and the distributivity of existential quantifiers over disjunctions

to put the formula into prenex normal form, then distribute the conjunction over the
disjunctions to put the body into disjunctive normal form:

(el W)Y =[2": A+ Ay:B|3x:A3y: B3y : B+ B.(
(Pl Nnue=a"Nuj =y ANuy=y)V
/Yl Az =2 ANug =y Ny =y)V
[G/y] AN ax = 2" Aoy =y Ay =y)V
[5/y])

(¢
(¥
(¥ M.

The first and last disjuncts are handled by the injectivity of the inclusions (deducible from
the inclusion rules), e.g.,

Gy N =2 Nug=y Ny =1y

uj=y Auy=yrFuj=uyki=y.
Eliminate the two cross terms using the second case rule, e.g.,

nwj=y ANy=vyr ujg=1yhk L.

66

Upon simplification the result is
(el W)Y =[2": A+ Ajy:B|3z: A((p Az =2")V (Y A px = 2'))].
The second half of the calculation is very similar and yields

[PlU[Y] = Aa(lp] @ [¢]) Vs =[2: Ay Blo V. —~

Definition. An interpretation or model of a distributive signature in a distributive
bicategory of relations B is specified by

e for every basic type C, an object [C] of B;

e for every function symbol f: A — B, a morphism [f] : [A] — [B] of Map(B);

e for every relation symbol R : (A, B), a morphism [R] : [A] — [B] of B.

The extension of the interpretation to any type of the signature is implicit in the definition:
[AxB]=[Al®[B], []=1I [A+B]=[A]®[B], [0]=O0.
We also maintain the convention that [z : A] := [4] :==[Ai] ® - -- @ [A4,].

An interpretation of a distributive signature extends to the full coherent language in that
signature by induction on the term and formula formation rules. Each term in context
I'|t: Ais interpreted as a morphism [I' | t] : [I'] — [A] of Map(B) as follows.

o Variable: [I',x : A,T" |z : A] := Oy ® 1pag ® Oprg-

e Function symbol: Given a function symbol f: A — B and a map [I' | ¢ : A,

[C)7(t): Bl =[] ¢: 4] [f].
e Pair: Given maps [I'|¢: A] and [I" | s : B],
IC|(ts): Ax B :==Ap([I'|t: Al @ [I'| s : B]).
e Projection: Given a map [['|t: A x B],

[T |m(t): Al :==['|t: Ax B] (14 ® Orsy)
[[F | Wg(t) : BH = HF | t:Ax B]] (<>[[A]] ® 1[[31]).
o Singleton: [I' | : I := Opry.
e Case: Given maps [['|[t: A+ B], [I'z: A|r:C], and [I',y: B|s: (], define
[T|6(ta:Ar,y: B.s):C] to be
Apy - (A @ [A+ B]) - dprypay sy - ([= Al r[@ [Ty 2 B s]) - Yyep,

where dxyz : XY ®Z) - (X ®Y)® (X ® Z) is the family of distributivity
isomorphisms in B.
e Inclusion: Given maps [I'|¢: A] and [I' | s : B],

[C]e(t): A+ B]:=[C|t: A] &My
[T |es(s): A+ B] =M, @[T |s:B].

Each formula in context I'; T | ¢ is interpreted as a morphism [I;T7 |] : [T] — [I7] of
B as follows.

67

Relation symbol: Given a relation symbol R : (A, B) and two maps [I" | ¢ : A] and
[|s: B], define

[T| R(t,)] == Aqey(IT | ¢ - AV[RI @[T | s : Blegay.

where, as usual, €;p] = V1015]-
FEquality: Given maps [I'|¢: A and [I'| s : A],

[Ct=s] =Ar([I'|t: AJQ[I'|s: A])egag

Falsz'ty: [[F, I’ ’ J_]] = J‘[[Fﬂv[[r']] = ‘[[F}].[[F’]]
Disjunction: Given morphisms [I; 17| ¢] : [I'] — [I'] and [I; T |] : [I'] — [I],

[O;T o Vo] i= Ay - ([T | @] @ [T T [4]) - Yoy

The other formation rules—weakening, truth, conjunction, and existential quantifier—are
interpreted exactly as in Appendix [A]

An interpretation or model of a coherent theory in a distributive bicategory of relations is
defined analogously to an interpretation of a regular theory in a bicategory of relations.
There is also a corresponding soundness theorem.

Lemma. Let [-] be an interpretation of a coherent theory T in a distributive bicategory
of relations B. For every theorem

I'fobrd of T,

there is a 2-morphism

[Cle] = [Cly] in B

Proof. As before, we must show that every inference rule of coherent logic (Figure [5)
is valid in B. We sketch the proofs for the rules that have not already been treated in

Appendix [A]
e Projection: The first projection axiom t 7 (¢, s) = ¢ holds because

Ax(f®@g)myz=Ax(f®9)(ly ® 0z) = Ax(f®g0z) = Ax(f®Ox) = f

whenever f : X — Y and g : X — Z are maps. The second projection axiom
F mo(t, s) = s is proved similarly.
e Pair: The pair axiom t (m(t), mo(t)) = t amounts to the equality

=(Ax®Ay)(Ix®oxy ®1ly)(1x ® 0y ® Ox ® 1y)
= (Ax ®Ay)(1x ® oxyOvex ® ly)
= (Ax®AY)(1x ® Ox ® Oy ® 1y)

=1x®1ly = Ixgy.

Axgy (Txy ® 7T/X,Y)

e Inclusion: The two inclusion axioms are dual to the two projection axioms, e.g.,
txy(f ® g)Vz = f for any two morphisms f: X — Z and g : Y — Z (which need
not be maps).

68

e Case: The first case axiom F (3x : A.yx =t) V (Jz : B.wox = t) amounts to

Oxey = Ar(Oxexy ® Oy y) Vxey-

By the dual of the pair axiom, (tx,y @ txy)¥xey = lxey, it suffices to show that
Oxey = A7(Ox @ Oy), or equivalently

Oxay = (Ox ® Oy) V1 =: [Ox, Oy]

Because the inclusions are maps, we have (1xyOxey = Ox and txyOxaey = Oy,
and hence the last equation holds by the universal property of the coproduct. We
omit the proof of the second case axiom.

e Singleton: The unit I of the tensor is terminal in Map(B).

e Empty: For any objects X,Y of B, there is at most one morphism X @ O — Y,
which must therefore be 1 xgo y. A similar result holds, with essentially the same
proof, in a distributive category; we refer to [CLW93, Proposition 3.2].

e Fulsity: Dual to truth.

e Disjunction: Dual to conjunction.

e Distributivity: As mentioned in Section [0.2] the distributive law

RN(SUT)=(RNS)YU(RNT)

holds in any distributive bicategory of relations. The proof, which we omit, is a
calculation involving the canonical distributivity isomorphism. O

Definition. The internal language of a small distributive bicategory of relations B is the
coherent theory Lang(B) defined as follows. Its signature consists of
e for every object A of B, a basic type A;
e for every pair of types (A4, B) and every morphism f : [A] — [B] of Map(B), a
function symbol f: A — B; and
e for every pair of types (A, B) and every morphism R : [A] — [B] of B, a relation
symbol R : (A, B).

A sequent I' | ¢ F 1 is an axiom of Lang(B) if and only if [['|¢] = [I'|¢] in B.
Throughout the definition, [-] is the obvious interpretation of the signature of Lang(B) in
the category B.

Remark. The expressivity of the internal language is not affected by including function
symbols for the maps because every map is also associated with a relation symbol.

As in Appendix [A] a single morphism of B can give rise to many function and relation
symbols of Lang(B). Moreover, despite replacing lists of types by compound types, it
remains the case that Lang(B) has “too many” types. For example, if A = A; ® Ay is a
product in B, then both A and A; x A, are types in Lang(B). Although the types are
isomorphic, they are formally distinct. This discrepancy explains why the equivalence of
categories in the theorem below is not an isomorphism of categories.

Theorem. For every small distributive bicategory of relations B, there is an equivalence
of categories
Cl(Lang(B)) ~ B in DistBiRel.

69

Proof. 1t suffices to construct a structure-preserving functor F' : Cl(Lang(B)) — B that
is full, faithful, and essentially surjective on objects. Define the functor F' on objects by
F(A) := [A] and on morphisms by

F(lx: Ay:B|y])=[zx:Ay:B|y]: F(A) = F(B).

The proof that F is well-defined and has the requisite properties proceeds as in Appendix [A]
We leave the details to the reader. O

70

	1 Introduction
	2 Description logic
	2.1 Review of description logic
	2.2 Structure of description logic

	3 The category of relations
	3.1 Monoidal category
	3.2 Dagger category
	3.3 Diagonals and codiagonals

	4 Abstract categories of relations
	5 Relational ologs
	5.1 Example: Friend of a friend

	6 Instance data
	6.1 Relational databases
	6.2 Graph databases
	6.3 Boolean matrices
	6.4 Linear relations

	7 Types and the open-world assumption
	8 Categorical logic
	9 More expressive relational ologs
	9.1 The category of relations, revisited
	9.2 Distributive bicategories of relations
	9.3 Categorical logic with product and sum types

	10 Conclusion and outlook
	Acknowledgments
	References
	A Regular logic and bicategories of relations
	B Coherent logic and distributive bicategories of relations

