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ABSTRACT
Your computer is continuously executing programs, but does it
really understand them? Not in any meaningful sense. That burden
falls upon human knowledge workers, who are increasingly asked
to write and understand code. They would benefit greatly from
intelligent tools that reveal the connections between their code and
its subject matter. Towards this prospect, we develop an AI system
that forms semantic representations of computer programs, using
techniques from knowledge representation and program analysis.
We focus on code written for data science, although our method is
more generally applicable. The semantic representations are created
through a novel algorithm for the semantic enrichment of dataflow
graphs. This algorithm is undergirded by a new ontology language
for modeling computer programs and a new ontology about data
science, written in this language.
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1 INTRODUCTION
Your computer—through which you are, in all likelihood, read-
ing this paper—is continuously, efficiently, and reliably executing
computer programs, but does it really understand them? Artificial
intelligence researchers have taken great strides towards teaching
machines to understand images, speech, natural text, and other
media. The same cannot be said of computer code, which has been
relatively neglected as a target of machine intelligence in the last
two decades. Yet the growth of computing’s influence on society
shows no signs of abating, with knowledge workers in all domains
increasingly required to create, maintain, and extend computer
programs. For all workers, but especially those outside software
engineering roles, programming is a means to achieve real-world
goals, not an end in itself. Programmers would benefit greatly from
intelligent tools that reveal the connections between their code,
their colleagues’ code, and the subject-matter concepts to which the
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code implicitly refers and to which their real enthusiasm belongs.
By teaching machines to comprehend code, we could create artifi-
cial agents that empower human knowledge workers or perhaps
even generate useful programs of their own.

One computational domain undergoing particularly rapid growth
is data science. Besides the usual problems facing the scientist-
turned-programmer, the data scientist must contend with a pro-
liferation of programming languages (like Python, R, and Julia)
and frameworks (too numerous to recount). Data science therefore
presents an especially compelling target for machine understanding
of computer code. An AI agent that simultaneously comprehends
the generic concepts of computing and the specialized concepts of
data science could prove enormously useful, for example by auto-
matically visualizing machine learning workflows or summarizing
data analyses as natural text for human readers.

Towards this vision, we propose and implement an AI system
that forms semantic representations of computer programs in a
particular subject-matter domain. Our system is fully automated,
inasmuch as it expects no input from the programmer besides
the program itself. We will focus on applications to data science
because we, the authors, are all data scientists of various stripes.
Nevertheless, we think that our methodology could be fruitfully
applied to other scientific domains with a heavy computational
focus, such as bioinformatics or climate science.

We contribute several components that cohere as an AI system
but also hold independent interest. First, we define a dataflow graph
representation of a computer program, called the raw flow graph.
We extract raw flow graphs from computer programs using static
and dynamic program analysis. We define another program rep-
resentation, called the semantic flow graph, combining dataflow
information with domain-specific information about data science.
This representation is supported by a new ontology language for
modeling computer programs and a new ontology about data sci-
ence, written in this language. Finally, we introduce a semantic
enrichment algorithm for transforming the raw flow graph into the
semantic flow graph.

The paper is organized as follows. In Section 2, we motivate our
method through a pedagogical example. In Section 3, we explain
the method itself, in a largely informal way. (An online supplement
adds precision and rigor to this discussion.) In Section 4, we bring
out connections to existing work in knowledge representation, pro-
gram analysis, programming language theory, and category theory.
Finally, in Section 5, we locate our work within the ongoing move-
ment towards open, reproducible, and collaborative data science.
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import numpy as np
from scipy.cluster.vq import kmeans2

iris = np.genfromtxt('iris.csv',
dtype='f8',
delimiter=',',
skip_header=1,

)
iris = np.delete(iris, 4, axis=1)

centroids, clusters = kmeans2(iris, 3)

Listing 1: k-means clustering in Python via NumPy and
SciPy

import pandas as pd
from sklearn.cluster import KMeans

iris = pd.read_csv('iris.csv')
iris = iris.drop('Species', 1)

kmeans = KMeans(n_clusters=3)
kmeans.fit(iris.values)
centroids = kmeans.cluster_centers_
clusters = kmeans.labels_

Listing 2: k-means clustering in Python via Pandas and
Scikit-learn

We also demonstrate our method on a real-world data analysis
drawn from a biomedical data science challenge.

2 AN EXAMPLE
We begin with a small, pedagogical example, to be revisited and
elaborated later. Three versions of a toy data analysis are shown in
Listings 1, 2 and 3. The first is written in Python using the scientific
computing packages NumPy and SciPy; the second in Python using
the data science packages Pandas and Scikit-learn; and the third in R
using the R standard library. The three programs perform the same
computation: they read the Iris dataset from a CSV file, drop the
last column (labeling the flower species), fit a k-means clustering
model with three clusters to the remaining columns, and return the
cluster assignments and centroids. The programs are syntactically
distinct but semantically equivalent.

Identifying this semantic equivalence, our system furnishes the
same semantic flow graph for all three programs, shown in Figure 1.
The labeled nodes and edges refer to concepts in the ontology. The
node tagged with a question mark refers to code with unknown
semantics.

3 IDEAS AND TECHNIQUES
We now explain our method of constructing semantic representa-
tions of computer programs. It is summarized diagrammatically in
Figure 2.

The system outputs two program representations, the raw and
semantic flow graphs. Both dataflow graphs capture the execution

iris = read.csv('iris.csv', stringsAsFactors=FALSE)
iris = iris[, names(iris) != 'Species']

km = kmeans(iris, 3)
centroids = km$centers
clusters = km$cluster

Listing 3: k-means clustering in R

clustering-model-clusters

vector

?

fit

array

k-means

k-means

read-tabular-file

table
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k-means-centroids
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Figure 1: Semantic flow graph for three versions of k-means
clustering analysis (Listings 1, 2 and 3)

of a computer program doing data analysis, but at different levels of
abstraction. The raw flow graph records the concrete function calls
made by the program. This graph is language and library dependent.
The semantic flow graph describes the same program in terms of
abstract concepts belonging to a formal ontology about data science.
This graph is language and library independent.

Our method has two major steps, which connect the computer
program and its representations (Figure 2). In the first step, computer
program analysis distills the raw flow graph from the program. A
process of semantic enrichment then transforms the raw flow graph
into the semantic flow graph.

Semantic enrichment requires a few supporting actors. An ontol-
ogy (or knowledge base), called the Data Science Ontology, underlies
the semantic content. It contains two types of knowledge: concepts
and annotations. Concepts formalize the abstract ideas of machine
learning, statistics, and computing on data. The semantic flow graph
has semantics, as its name suggests, because its nodes and edges are
linked to concepts.Annotationsmap code from data science libraries,
such as Pandas and Scikit-learn, onto concepts. During semantic
enrichment, annotations say how to translate concrete functions
in the raw flow graph into abstract functions in the semantic flow
graph.

With the outline of our method now in view, we develop its
elements in greater detail. We do so as fully as space permits but
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Figure 2: System architecture

with minimal mathematical formalism. An extended, online version
of this paper adds technical detail for the interested reader.

3.1 The Monocl ontology language
The Data Science Ontology is written in a new ontology language
called the MONoidal Ontology and Computing Language (Mon-
ocl). We find it helpful to think of Monocl as a minimalistic, typed,
functional programming language. The analogy usually suggests
the right intuitions. It is, however, imperfect because the ontol-
ogy language differs from any real-world programming language,
being designed for knowledge representation rather than actual
computing.

Monocl is written in a point-free textual syntax or equivalently
in a graphical syntax of interconnected boxes and wires. The two
syntaxes are parallel though not quite isomorphic. For simplicity,
we present only the graphical syntax.

Every expression in the ontology language is either a type or
a function. This terminology agrees with that of functional pro-
gramming. Thus, a type represents a kind or species of thing in a
subject-matter domain, here data science. A function is a functional
relation or mapping from an input type (the domain) to an output
type (the codomain). The main role of ontology language is to say
how new types and functions can be constructed from existing
types and functions. Let us see how using the graphical syntax.

Types are represented graphically by wires. A basic type X is
drawn as a single wire labeled X . The product of two types X and
Y is another type X × Y . It has the usual meaning: an element of
type X × Y is an element of type X and an element of type Y , in
that order. Products of three or more types are defined similarly.
Diagrammatically, a product of n types is a bundle of n wires in
parallel. Product types are similar to record types in real-world
programming languages, such as struct types in C. There is also
a unit type 1 inhabited by a single element. It is analogous to the
void type in C and Java, the NoneType type in Python (whose sole
inhabitant is None), and the NULL type in R. Diagrammatically, the
unit type is an empty bundle of wires (a blank space).

Functions are represented graphically by wiring diagrams (also
known as string diagrams). A basic function f with domain X and
codomain Y , written f : X → Y , is drawn as a box labeled f . The
top of the box has input ports with incomingwiresX and the bottom
has output ports with outgoing wires Y . A wiring diagram defines

a function by connecting boxes with wires according to certain
rules. The diagram has an outer box with input ports, defining
the function’s domain, and output ports, defining the codomain.
Figures 1, 4, 5 and 6 are all examples of wiring diagrams.

The rules for connecting boxes within a wiring diagram corre-
spond to ways of creating new functions from old. The most funda-
mental ways are composing functions and taking products of func-
tions. The composition of a function f : X → Y with д : Y ′ → Z
is a new function f · д : X → Z , with the usual meaning. Algo-
rithmically speaking, f · д computes in sequence: first f and then
д. In order to have a valid composition, the intermediate types Y
and Y ′ must be compatible, in a sense to be explained later. The
product of functions f : X →W and д : Y → Z is another function
f ×д : X ×Y →W ×Z . Algorithmically, f ×д computes f and д in
parallel, taking the inputs, and returning the outputs, of both f and
д. Figure 3 shows the graphical syntax for composition and prod-
ucts. Here we pass over several other constructions on functions,
such as identities, duplication, and deletion.

A type can be declared a subtype of one or more other types. To
a first approximation, subtyping establishes an “is-a” relationship
between types. In the Data Science Ontology, matrices are a sub-
type of both arrays (being arrays of rank 2) and data tables (being
tables whose columns all have the same data type). As this example
illustrates, subtyping in Monocl is not like inheritance in a typical
object-oriented programming language. Instead, subtyping should
be understood through implicit conversion, also known as coercion
[Pierce 1991; Reynolds 1980]. The idea is that if a typeX is a subtype
of X ′, then there is a canonical way to convert elements of type X
into elements of type X ′. Elaborating our example, a matrix simply
is an array (of rank 2), hence can be trivially converted into an array.
A matrix is not strictly speaking a data table but can be converted
into one (of homogeneous data type) by assigning numerical names
to the columns. Notice that there is no set-theoretic containment
between matrices and data tables, hence the slogan that “types are
not sets” [Morris 1973].

Besides serving as the “is-a” relation ubiquitous in knowledge
representation systems, subtypes enable ad hoc polymorphism. To
compose a function f : X → Y with д : Y ′ → Z , we require only
that Y be a subtype of Y ′. Operationally, to compute f · д, we first
compute f , then coerce the result from type Y to Y ′, and finally
compute д. Diagrammatically, a wire has valid types if and only if
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Figure 3: Graphical syntax for two fundamental operations
on functions

Concept Annotation

Type data table pandas data frame

statistical model scikit-learn estimator

Function reading a tabular
data file

read_csv function in
pandas

fitting a statistical
model to data

fit method of scikit-
learn estimators

Table 1: Examples from the Data Science Ontology

the source port’s type is a subtype of the target port’s type. Thus
implicit conversions really are implicit in the graphical syntax.

Monocl also supports “is-a” relations between functions, which
we call subfunctions in analogy to subtypes. In the Data Science
Ontology, reading a table from a tabular file (call it f ) is a subfunc-
tion of reading data from a generic data source (call it f ′). That
sounds intuitively plausible but what does it mean? The domain
of f , a tabular file, is a subtype of the domain of f ′, a generic data
source. The codomain of f , a table, is a subtype of the codomain of
f ′, generic data. Now consider two possible computational paths
that take a tabular file and return generic data. We could apply f ,
then coerce the resulting table to generic data. Alternatively, we
could coerce the tabular file to a generic data source, then apply f ′.
The subfunction relation asserts that these two computations are
equivalent.

3.2 The Data Science Ontology
We have started to write, in the Monocl ontology language, an
ontology about statistics, machine learning, and data processing.
We call it the Data Science Ontology. It aims to support automated
reasoning about data science software. As we have said, it consists
of concepts and annotations, each of which is either a type or a
function. This leads to a two-way classification of the ontology’s
contents. The four combinations are listed in Table 1 along with
examples of each.

Concepts formalize the abstract ideas of data science. They con-
stitute the basic types and basic functions from which more complex
types and functions are constructed, using the ontology language.

According to our methodology, data analyses are modeled as func-
tions written in the ontology language and composed of the ontol-
ogy’s concepts.

As a further modeling assumption, we suppose that software
packages for data science, such as Pandas and Scikit-learn, instan-
tiate concepts. Annotations say how this instantiation occurs by
mapping the types and functions in software packages onto the
types and functions of the ontology. To avoid confusion between
levels of abstraction, we call the former “concrete” and the latter
“abstract.” So a type annotation maps a concrete type—a primitive
type or user-defined class in a language like Python or R—onto
an abstract type—a type concept. Likewise, a function annotation
maps a concrete function onto an abstract function. We construe
“concrete function” in the broadest possible sense to include any
programming language construct that “does something”: ordinary
functions, methods of classes, attribute getters and setters, etc. A
great deal of modeling flexibility is needed to accurately translate
the diverse APIs of statistical software into a single set of universal
concepts. To achieve this flexibility, an annotation’s abstract defini-
tion may be an arbitrary Monocl program—any function expressible
in the ontology language using the ontology’s concepts.

3.3 Raw and semantic dataflow graphs
With this preparation, we can attain a more exact understanding of
the raw and semantic flow graphs. The two dataflow graphs have in
common that they are wiring diagrams representing a data analysis.
However, they live at different levels of abstraction.

The raw flow graph describes the computer implementation of a
data analysis. Its boxes are concrete functions or, more precisely, the
function calls observed during execution of the program. Its wires
are concrete types together with their observed elements. These
“elements” are either literal values or object references, depending
on the type. To illustrate, Figures 4, 5 and 6 show the raw flow
graphs for Listings 1, 2 and 3, respectively. (The wire elements are
not shown.)

The raw flow graph is extracted from a data analysis by computer
program analysis [Nielson et al. 1999]. Unlike the usual application
to optimizing compilers [Aho et al. 2006], our program analysis
is dynamic, not static. It records interprocedural data flow during
program execution. Since our original publication [Patterson et al.
2017], the mathematical formalism behind our program analysis
has evolved but the algorithms and implementation have not. We
defer to that paper for engineering aspects of the raw flow graph.
The merits and limitations raised there remain in force.

The semantic flow graph describes a data analysis in terms of
universal concepts, independent of the particular programming
language and libraries used to implement the analysis. Its boxes are
function concepts. Its wires are type concepts together with their
observed elements. The semantic flow graph is thus an abstract
function, composed of the ontology’s concepts and written in the
graphical syntax, but augmented with computed values.

3.4 Semantic enrichment
The semantic enrichment algorithm transforms the raw flow graph
into the semantic flow graph. It proceeds in two independent stages,
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Figure 4: Raw flow graph for k-means clustering in Python
via NumPy and SciPy (Listing 1)
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Figure 5: Raw flow graph for k-means clustering in Python
via Pandas and Scikit-learn (Listing 2)

$

kmeans

kmeans

$

read.csv

names

data.frame

[

!=

character

logical

data.frame

Figure 6: Raw flow graph for k-means clustering in R (List-
ing 3)

one of expansion and one of contraction. The expansion stagemakes
essential use of the ontology’s annotations.

Expansion. In the expansion stage, the annotated parts of the raw
flow graph are replaced by their abstract definitions. Each annotated
box—that is, each box referring to a concrete function annotated by
the ontology—is replaced by the corresponding abstract function.
Likewise, the concrete type of each annotated wire is replaced by
the corresponding abstract type. This stage of the algorithm is
“expansionary” because, as we have seen, a function annotation’s
definition may be an arbitrary Monocl program. In other words, a
single box in the raw flow graph may expand to an arbitrarily large
subdiagram in the semantic flow graph.

The expansion procedure is functorial, to use the jargon of cate-
gory theory. Informally, this means two things. First, notice that
concrete types are effectively annotated twice, explicitly by type
annotations and implicitly by the domain and codomain types of
function annotations. Functorality requires that these abstract types
be compatible, ensuring the logical consistency of type and function
annotations. Second, expansion preserves the structure of the ontol-
ogy language, including composition and products. Put differently,
the expansion of a wiring diagram is completely determined by
its action on individual boxes (basic functions). Functorality is a
modeling decision that greatly simplifies the semantic enrichment
algorithm, at the expense of imposing restrictions on how the raw
flow graph may be transformed.

Contraction. It is practically infeasible to annotate every reusable
unit of data science source code. Most real-world data analyses use
concrete types and functions that are not annotated. This unanno-
tated code has unknown semantics, so it does not belong in the
semantic flow graph. On the other hand, it usually cannot be deleted
from the wiring diagram without altering the connectivity of the
rest of the diagram. Semantic enrichment must not corrupt the
dataflow record.

As a compromise, in the contraction stage, the unannotated parts
of the raw flow graph are simplified to the extent possible. All
references to unannotated types and functions are removed, leav-
ing behind unlabeled wires and boxes. Semantically, the unlabeled
wires are interpreted as arbitrary “unknown” types and the unla-
beled boxes as arbitrary “unknown” functions (which could have
known domain and codomain types). The diagram is then simpli-
fied by encapsulating unlabeled boxes. Specifically, every maximal
connected subdiagram of unlabeled boxes is encapsulated by a sin-
gle unlabeled box. The interpretation is that any composition of
unknown functions is just another unknown function. This stage is
“contractionary” because it can only decrease the number of boxes
in the diagram.

Example revisited. To reprise our original example, semantic
enrichment transforms the raw flow graphs of Figures 4, 5 and 6
into the same semantic flow graph, shown in Figure 1. Let us take
a closer look at a few of the expansions and contractions involved
in the two Python programs.

In the first program (Listing 1), the annotated kmeans2 function
in SciPy expands to an abstract program that creates a k-means
clustering model, fits it to the data, and extracts its clusters and cen-
troids. The abstract k-means clustering model does not correspond
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to any concrete object in the original program. We routinely use
this modeling pattern to cope with functions that are not object-
oriented with respect to models. By contrast, in the second program
(Listing 2), the abstract k-means model corresponds to an instance
of the KMeans class in Scikit-learn.

Now consider the contractions. In the first program, the only
unannotated box is the NumPy delete function. Contracting this
box does not reduce the size of the wiring diagram. Only the
second program is subjected to a contraction involving multiple
boxes. The subdiagram consisting of the pandas NDFrame.drop
method composed with the values attribute access (via the spe-
cial DataFrame.__getattribute__ method) is encapsulated by a
single unlabeled box.

4 RELATEDWORK
This paper extends our previous work [Patterson et al. 2017] in
several directions.We designed a new ontology language alongwith
a new ontology written in this language. We replaced our original,
ad hoc procedure for creating the semantic flow graph with the
more flexible and principled semantic enrichment algorithm.

In this project, we have been inspired by a constellation of ideas
at the intersection of knowledge representation, program analy-
sis, programming language theory, and category theory. We now
position our work in relation to these areas.

Knowledge representation and program analysis. The history of
artificial intelligence is replete with interactions between knowl-
edge representation and computer program analysis. In the late
'80s and early '90s, automated planning and ruled-based expert sys-
tems featured in “knowledge-based program analysis” [Biggerstaff
et al. 1994; Harandi and Ning 1990; Johnson and Soloway 1985].
Other early systems were based on description logic [Devanbu et al.
1991; Welty 2007] and graph parsing [Wills 1992]. Such projects
are supposed to help software developers maintain large codebases
(exceeding, say, a million lines of code) in specialized industrial
domains like telecommunications.

Our research goals are less ambitious in scale but also, we hope,
more tractable. We focus on knowledge workers who write short,
semantically rich scripts, without the endless layers of abstraction
found in large codebases. In data science, the code tends to be
much shorter, the control flow more linear, and the underlying
concepts better defined, than in large-scale industrial software. Our
methodology is accordingly quite different from that of the older
literature.

Ontologies for data science. There already exist several ontolo-
gies and schemas related to data science, such as STATO, an OWL
ontology about basic statistics [Gonzalez-Beltran and Rocca-Serra
2016]; the Predictive Modeling Markup Language (PMML), an XML
schema for data mining models [Guazzelli et al. 2009]; and ML
Schema, a schema for data mining and machine learning workflows
under development by a W3C community group [Lawrynowicz
et al. 2017]. We have created a new ontology because these stan-
dards are not suitable for precisely describing data science code.
The Data Science Ontology is designed for exactly this purpose.

Ontology languages and programming languages. We have also
designed a new ontology language, Monocl, for modeling computer

programs. Although it is the medium of the Data Science Ontology,
the ontology language is conceptually independent of data science
or any other computational domain.

The mathematical foundation of the ontology language is cate-
gory theory, as hinted in Section 3 and developed in the extended
version of this paper. We hope that our project will advance an
emerging paradigm of knowledge representation based on category
theory [Patterson 2017; Spivak and Kent 2012]. We find category
theory appealing for several reasons.

First, category theory serves as a bridge to programming lan-
guage theory, whose relevance to modeling computer programs
is obvious. Due to the close connection between category theory
and type theory [Crole 1993; Jacobs 1999]—most famously, the
correspondence between cartesian closed categories and simply
typed lambda theories [Lambek and Scott 1988]—we may occupy
the syntactically and semantically flexible world of algebra but still
utilize the highly developed theory of programming languages. We
borrow from programming language theory notions of subtyping
and ad hoc polymorphism [Goguen 1978; Reynolds 1980].

Besides its connection to programming language theory, cate-
gory theory is useful in its own right. We interpret the semantic
enrichment algorithm as a functor. Also, the graphical syntax of
string diagrams offers an intuitive yet rigorous alternative to the
typed lambda calculus’s conventional textual syntax [Selinger 2013],
which beginners may find impenetrable. The family of graphical lan-
guages based on string diagrams is a jewel of category theory [Baez
and Stay 2010; Selinger 2010], with applications to such diverse
fields as quantum mechanics [Coecke and Paquette 2010], control
theory [Baez and Erbele 2015], and natural language semantics
[Coecke et al. 2013].

5 DISCUSSION
Like the code it analyzes, our AI system is not an end in itself
but a means to achieve productive activity in our world. Teaching
machines to comprehend code opens exciting possibilities, which
are only just beginning to be explored.

The field of data science is ripe for transformation by artifi-
cial intelligence. Subcommunities are fragmented along lines of
methodology, programming languages, and frameworks, hindering
collaboration and knowledge sharing. A unified semantic represen-
tation of data analysis could help break down these barriers. The
opportunity becomes only more apparent as the pressure builds for
scientists to publish their code and data. Future science looks to be
more open and collaborative than ever before [Nielsen 2012], due
to a confluence of forces, from the birth of collaboration platforms
like GitHub and Kaggle to the growing demand for reproducibil-
ity in science [Munafò et al. 2017]. This will be fertile ground for
machine-assisted discovery and knowledge sharing, at both small
and large scales.

At the scale of individuals, we imagine a data science IDE that
interacts with the analyst at both syntactic and semantic levels.
Suppose the analyst creates a logistic regression model using the
glm function in R. By a simple inference within the ontology, the
environment recognizes logistic regression as a classification model.
It suggests a more flexible classification model to the analyst, say
the logistic generalized additive model. It then generates code to
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invoke the gam function from the R package gam. In this way, the
environment encourages the analyst to discover both new code and
new concepts.

As programmers, we are all prone to occasional lapses of dis-
cipline in commenting our code. To supplement the explanations
written by fallible humans, an AI agent might translate our seman-
tic representations of data analyses into written descriptions, via
natural language generation [Gatt and Krahmer 2017]. The playful
R package explainr does exactly that for a few R functions, in iso-
lation [Parker et al. 2015]. A more comprehensive system based on
our work would span multiple languages and libraries and would
document both the individual steps and the high-level design of a
data analysis.

New possibilities for AI emerge at the scale of online platforms
for collaborative data science. Online platforms like Kaggle, Driven
Data, and DREAMChallenges host thousands of data analyses, writ-
ten in Python, R, and other languages. Whenever there are many
data analyses at play, competing or complementary, we could try to
automate certain kinds of statistical meta-analysis or model check-
ing, usually conducted laboriously by hand. Or, taking the view-
point of machine learning, our system might feed meta-learning
algorithms—learning algorithms that take other models as input
data. All such “meta-level” data science would benefit from a unified
semantic representation.

For concreteness, let us see how our method behaves on a real-
world data analysis, drawn from a DREAM Challenge. DREAM
Challenges address questions in systems biology and translational
medicine [Saez-Rodriguez et al. 2016]. The challenge we consider
asks how well clinical and genetic covariates predict patient re-
sponse to anti-TNF treatment for rheumatoid arthritis [Sieberts
et al. 2016]. (The authors find that the genetic covariates do not
meaningfully increase the predictive power beyond what is already
contained in the clinical covariates.) We analyze two models submit-
ted by a top-ranking contestant [Kramer 2014]. The code, written
in R, has been lightly modified for portability.

The semantic flow graph for the two models is shown in Figure 7.
We interpret the highlights of the analysis. Per the challenge re-
quirements, the analyst builds two predictive models, one including
only clinical covariates and the other including both genetic and
clinical covariates. Both models use the Cubist regression algorithm
[Kuhn and Johnson 2013, §8.7], a variant of random forests based
on M5 regression model trees [Wang andWitten 1997]. Because the
genetic data is high-dimensional, the second model is constructed
using a subset of the genetic covariates, determined by a variable
selection algorithm called VIF regression [Lin et al. 2011]. The linear
regression model created by VIF regression is used only for variable
selection, not for prediction.

Most of the unlabeled nodes in Figure 7, including the large node
at the top, refer to code for data preprocessing or transformation.
There is no fundamental obstacle to representing the semantics of
such code; it so happens that the “data munging” portion of the
Data Science Ontology has not yet been developed. However, this
situation illustrates another, more important point. Our system does
not need or expect the ontology to contain complete information
about the program’s types and functions. It is designed to degrade
gracefully, producing useful results even in the face of missing
information.

In future work, we plan to build on the suggestive examples
presented in this paper. We will develop methods for automated
meta-analysis based on semantic flow graphs and conduct a system-
atic empirical evaluation on a corpus of data analyses. We also have
ambitions to more faithfully represent the mathematical and statis-
tical structure of models. Our representation is currently focused
on the computational aspects, but the most interesting applications
require knowledge of both.

Only by a concerted community effort will the vision of machine-
assisted data science be realized. To that end, we will release as
open source software our Python and R program analysis tools,
written in their respective languages, and our semantic enrichment
algorithm, written in Julia. We will also crowdsource the further
development of the Data Science Ontology. We entreat the reader to
join us in the effort of bringing artificial intelligence to the practice
of data science.
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