$\quad$
$\quad\implies\quad$
Evan Patterson
Stanford University, Statistics Department
AMS Fall Western Sectional Meeting
Special Session on Applied Category Theory
November 5, 2017
"An ontology is a specification of a conceptualization."
—Thomas Gruber, co-founder of Siri, Inc.
New applications motivating KR research:
Syntax and semantics of a few concept constructors:
$$
\begin{align}
C \sqcap D
\qquad&\stackrel{\mathrm{FOL}}{\leadsto}\qquad
(C \sqcap D)(x) \ \leftrightarrow\ C(x) \wedge D(x) \\
\forall R.C
\qquad&\stackrel{\mathrm{FOL}}{\leadsto}\qquad
(\forall R.C)(x) \ \leftrightarrow\ \forall y. R(x,y) \wedge C(y) \\
\exists R.\top
\qquad&\stackrel{\mathrm{FOL}}{\leadsto}\qquad
(\exists R.\top)(x) \ \leftrightarrow\ \exists y. R(x,y)
% \exists R.C
% \qquad&\stackrel{\mathrm{FOL}}{\leadsto}\qquad
% (\exists R.C)(x) \ \leftrightarrow\ \exists y. R(x,y) \wedge C(y)
\end{align}
$$
Syntax and semantics of concept subsumption:
$$
C \sqsubseteq D
\qquad\stackrel{\mathrm{FOL}}{\leadsto}\qquad
\forall x. C(x) \rightarrow D(x)
$$
This project is about relational ologs, a categorical-relational framework for knowledge representation.
Goals:
In contrast to DL, relational ologs provide
All these features emerge automatically from the categorical framework.
Rel, the category of sets and relations, is a monoidal category.
Composition: Given relations $R: X \to Y$ and $S: Y \to Z$,
$\quad$
$\quad:=\quad \{(x,z): \exists y \in Y. xRy \wedge ySz\}$
Cartesian product: Given relations $R: X \to Y$ and $S: Z \to W$,
$\quad$
$\quad:=\quad \{((x,z),(y,w)): xRy \wedge zSw\}$
Dagger: Given a relation $R: X \to Y$,
$\quad$
$\quad:=\quad \{(y,x): yRx\}$
Diagonals: For every set $X$,
$\quad$
$\quad:=\quad \{(x,(x',x'')): x=x' \wedge x=x''\}$
$\quad$
$\quad:=\quad \{(x,*): x \in X\}$
Together they define a family of commutative special $\dagger$-Frobenius monoids.
Rel is also a dagger compact category with units and counits defined by
$\quad$
$\quad:=\quad$
$\quad=\quad \{(*,(x,x')): x = x'\}$
$\quad$
$\quad:=\quad$
$\quad=\quad \{((x,x'),*): x = x'\}$
Rel is a locally posetal 2-category: given relations $R,S: X \to Y$,
$$
R \implies S \qquad\text{iff}\qquad R \subseteq S.
$$
2-morphisms correspond to subsumptions in DL.
Intersection of $R,S: X \to Y$:
$\quad R \sqcap S \quad=\quad$
Limited existential quantification of $R:X \to Y$:
$\quad \exists R.\top \quad=\quad$
A bicategory of relations is a locally posetal 2-category $\mathcal{B}$ that is also a symmetric monoidal category $(\mathcal{B},\otimes,I)$ with diagonals $(X,\Delta_X,\lozenge_X)_{X \in \mathcal{B}}$, such that
$\qquad$
$\quad\implies\quad$
$\qquad$
$\quad\implies\quad$
A relational olog is a finitely presented bicategory of relations.
"Finitely presented" means generated by
Instance data for a relational olog $\mathcal{B}$ is a functor $\mathcal{B} \to \mathcal{D}$ in $\mathbf{BiRel}$, where the data category $\mathcal{D}$ is, e.g.,
$$ R = \begin{array}{|c|c|} \hline X & Y \\\hline 1 & 2 \\ 2 & 1 \\ 3 & 3 \\\hline \end{array} $$
$$ R = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} $$
Every regular theory $\mathbb{T}$ has a classifying category $\mathrm{Cl}(\mathbb{T})$, a bicategory of relations with
Every (small) bicategory of relations $\mathcal{B}$ has an internal language $\mathrm{Lang}(\mathcal{B})$, a regular theory with
For every (small) bicategory of relations $\mathcal{B}$, there is an equivalence of categories $$ \mathrm{Cl}(\mathrm{Lang}(\mathcal{B})) \simeq \mathcal{B} \qquad\text{in}\qquad \mathbf{BiRel}. $$
Paper: E. Patterson, "Knowledge Representation in Bicategories of Relations", 2017 [arXiv]
Background reading: