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Structuralism about statistical models

Statistical models
(1) are not black boxes, but have meaningful internal structure
(2) are not uniquely determined, but bear meaningful relationships to

alternative, competing models
(3) are sometimes purely phenomenological, but are often derived

from, or at least motivated by, more general scientific theory

This project aims to understand (1) and (2) via categorical logic.

In this talk, I assume some knowledge of category theory but as little
as I can about statistics.



Statistical models, classically

A statistical model is a parameterized family {Pθ}θ∈Ω of probability
distributions on a common space X :

Ω is the parameter space
X is the sample space

Think of a statistical model as a data-generating mechanism

P : Ω→ X .

Statistical inference aims to approximately invert this mechanism:
find an estimator d : X → Ω such that, for any θ ∈ Ω,

d(X ) ≈ θ given data X ∼ Pθ.



Statistical models, classically

This setup goes back to Wald’s statistical decision theory (Wald 1939;
Wald 1950). Within it, one can already:

define general concepts like sufficiency and ancillarity
establish basic results like the Neyman-Fisher factorization and
Basu’s theorem

Recently, Fritz has shown that much of this may be reproduced in a
purely synthetic setting (Fritz 2020)

However, the classical definition of statistical model abstracts away a
large part of statistics:
(1) formalizes models as black boxes
(2) does not at all formalize relationships between different models



Logical theories and models

Can logic help formalize the structure of statistical models?

Mathematical logic distinguishes between theories and models:

Logical theory Model of theory

Axiomatic Constructed
Synthetic/qualitative Analytic/quantitative
Formal language Informal mathematics (usually)
Machine representable Not (directly) representable

What about statistical theories and statistical models?



Models in logic and in science

Not a new idea to draw a connection between models in logic and in
statistics (or in science generally).

I claim that the concept of model
in the sense of Tarski may be used
without distortion and as a funda-
mental concept in all of the disci-
plines. . . In this sense I would assert
that the meaning of the concept of
model is the same in mathematics and
the empirical sciences. The difference
to be found in these disciplines is to
be found in their use of the concept.
(Suppes 1961)

Patrick Suppes
(1922–2014)



The semantic view of scientific theories

Suppes initiated the “semantic view” of scientific theories:
Many different flavors, from different philosophers
(van Fraassen, Sneed, Suppe, Suppes, . . . )
For Suppes, “to axiomatize a theory is to define a set-theoretical
predicate” (Suppes 2002)

Difficulties for statistical models and beyond:
After Suppes, proponents of the semantic view paid little
attention to statistics
Set theory is impractical to implement, esp. with probability
Hard to make sense of relationships between logical theories



The algebraization of logic

Beginning with Lawvere’s thesis (Lawvere 1963), categorical logic has
achieved an algebraization of logic:

Logical theories are replaced by categorical structures
Obliterates the distinction between syntax and semantics

Some consequences:
Theories are invariant to presentation
Functorial semantics, especially outside of Set
“Plug-and-play” logical systems, via different categorical gadgets
Theories have morphisms, which formalize relationships



Dictionary between category theory, logic, and statistics

Category theory Mathematical logic Statistics

Category T Theory Statistical theory*

Functor M : T→ S Model Statistical model

Natural
transformation
α : M → M ′

Model
homomorphism

Morphism of
statistical model

*Statistical theories (T, p) have extra structure, the sampling morphism p : θ → x



Family tree of categorical logics

symmetric monoidal category
(symmetric monoidal theory)

cartesian category
(algebraic theory)

regular category
(regular logic: ∃,∧,>)

coherent category
(coherent logic: ∃,∧,∨,>,⊥)

elementary topos
(first- and higher-order logic)

cartesian closed category
(typed λ-calculus with ×, 1)

bicartesian closed category
(typed λ-calculus with ×,+, 1, 0)



Probability and statistics in the family tree

symmetric monoidal category

Markov category

cartesian category
(algebraic theory)

linear algebraic
Markov category

(statistical theory)
linear algebraic

cartesian category



Informal example: linear models

A linear model with design matrix X ∈ Rn×p has sampling distribution

y ∼ Nn(Xβ, σ2In) w/ parameters β ∈ Rp, σ2 ∈ R+.

A theory of a linear model (LM, p) is generated by objects y , β, µ, σ2

and morphisms X : β → µ and q : µ⊗ σ2 → y and has sampling
morphism p given by

X

q

ββ σ2σ2

µµ

yy

Then a linear model is a functor M : LM→ Stat.



Markov kernels

Statistical theories will have functorial semantics in a category of
Markov kernels.

Recall: A Markov kernel X → Y between measurable spaces X ,Y is
a measurable map X → Prob(Y).

Examples:
A statistical model (Pθ)θ∈Ω is a kernel P : Ω→ X
(Čencov 1965; Čencov 1982)
Parameterized distributions, e.g., the normal family

N : R× R+ → R, (µ, σ2) 7→ N (µ, σ2)

or, more generally, the d-dimensional normal family

Nd : Rd × Sd
+ → Rd , (µ,Σ) 7→ Nd (µ,Σ).



Synthetic reasoning about Markov kernels

Two fundamental operations on Markov kernels:
1. Composition: For kernels M : X → Y and N : Y → Z,

M

N

XX

YY

ZZ

(M · N)(dz | x) :=
∫
Y

N(dz | y)M(dy | x)

2. Independent product: For kernels M :W → Y and N : X → Z,

M N
WW XX

YY ZZ

(M ⊗ N)(w , x) := M(w)⊗ N(x)



Synthetic reasoning about Markov kernels

Also a supply of commutative comonoids, for duplicating and
discarding data.

Markov kernels obey all laws of a cartesian category, except one:

M
XX

YY
?=

M M

XX

YY YY

.

Proposition
Under regularity conditions, a Markov kernel M : X → Y is
deterministic if and only if above equation holds.



Markov categories

Markov categories are a minimalistic axiomatization of categories of
Markov kernels (Fong 2012; Cho and Jacobs 2019; Fritz 2020).

Definition: A Markov category is a symmetric monoidal category
with a supply of commutative comonoids

xx
and

xx
,

such that every morphism f : x → y preserves deleting:

f
xx

yy
=

xx
.



Constructions in Markov categories

Definition: A morphism f : x → y in a Markov category is
deterministic if

f
xx

yy
=

f f

xx

yy yy

.

Besides (non)determinism, in a Markov category one can express:
conditional independence and exchangeability
disintegration, e.g., for Bayesian inference (Cho and Jacobs 2019)
many notions of statistical decision theory (Fritz 2020)



Linear and other spaces for statistical models

In order to specify most statistical models, more structure is needed.

Much statistics happens in Euclidean space or structured subsets
thereof:

real vector spaces
affine spaces
convex cones, esp. R+ or PSD cone Sd

+ ⊂ Rd×d

convex sets, esp. [0, 1] or probability simplex ∆d ⊂ Rd+1

Also in discrete spaces:
additive monoids, esp. N or Nk

unstructured sets, say {1, 2, . . . , k}



Lattice of linear and other spaces

Such spaces belong to a lattice of symmetric monoidal categories:

(Cone,⊕, 0) (CMon,⊕, 0)

(VectR,⊕, 0) (Set,×, 1)

(AffR,×, 1) (Conv,×, 1)

Note:
Cone is category of conical spaces, abstracting convex cones
Conv is category of convex spaces, abstracting convex sets



Supplying a lattice of PROPs

Dually, there is a lattice of theories (PROPs):

Th(CBimon) Th(Cone)

Th(CComon) Th(VectR)

Th(Conv) Th(AffR)

Definition: A supply of a meet-semilattice L of PROPs in a
symmetric monoidal category (C,⊗, I) consists of a monoid
homomorphism

P : (|C| ,⊗, I)→ (L,∧,>), x 7→ Px ,

and for each object x ∈ C, a strong monoidal functor sx : Px → C
with sx (m) = x⊗m, subject to coherence conditions (mildly
generalizing Fong and Spivak 2019).



Linear algebraic Markov categories

Definition: A linear algebraic Markov category is a symmetric
monoidal category supplying the above lattice of PROPs, such that it
is a Markov category.

Linear algebraic Markov categories come
in the small, as statistical theories
in the large, as the semantics of statistical theories



Category of statistical semantics

The linear algebraic Markov category Stat has
as objects, the pairs (V ,A), a finite-dimensional real vector space
V with a measurable subset A ⊂ V
as morphisms (V ,A)→ (W ,B), the Markov kernels A→ B
a symmetric monoidal structure, given by

(V ,A)⊗ (V ,B) := (V ⊕W ,A× B), I := (0, {0})

and by the independent product of Markov kernels
a supply according to whether the subset A is closed under
linear/affine/conical/convex combinations, addition, or nothing.



Additivity of normal family

Normal family is additive: if Xi
ind∼ N (µi , σ

2
i ), then

X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

In Stat, additivity is the equation:

N
RR R+R+

RR

= N N
RR R+R+ RR R+R+

RR



Homogeneity of normal family

Normal family is homogeneous: if X ∼ N (µ, σ2), then

cX ∼ N (cµ, c2σ2), ∀c ∈ R.

In Stat, homogeneity is the equation:

c c2

N

RR R+R+

RR R+R+

RR

=
N

c

RR R+R+

RR

RR

∀c ∈ R.

Call both properties together “linear-quadratic”.



Presenting the normal family

Isotropic normal family can be presented by generators and relations.

Theorem
For any d ≥ 1, a linear algebraic Markov category C, containing a
morphism f : y⊗d ⊗ s → y⊗d , can presented such that for any supply
preserving functor

M : C→ Stat with M(y) = R and M(s) = R+,

the Markov kernel M(f ) : Rd × R+ → Rd is the isotropic normal
family, up to an absolute scale.

That is, there exists σ2
0 ∈ R+ such that

M(f )(µ, φ) = Nd (µ, φσ2
0Id ), ∀µ ∈ Rd , φ ∈ R+.



Characterizations of normal distribution

Main ingredient is the symmetry of the normal distribution.

Theorem (Maxwell)
For any d ≥ 2, a random vector Y ∈ Rd has i.i.d. centered normal
distribution if and only if Y is spherically symmetric and has
independent components.

Or, simpler:

Theorem (Pólya 1923)
If X and Y are i.i.d. random variables such that

X d= 1√
2

(X + Y ),

then X is centered normal.



Sketch of presentation

1. Reduce to centered case via generator g : s → y⊗d :

f
y⊗dy⊗d ss

y⊗dy⊗d

= g
ss

y⊗dy⊗d

2. Assert that g is homogeneous, in above sense
3. Assert that g has independent (or i.i.d.) components
4. Axiomatize Maxwell’s or Pólya’s theorem, e.g., when d = 2,

g
ss

yy
yy

=

g

1√
2

ss

yy

yy



Statistical theories and models

A statistical theory (T, p) consists of
a small linear algebraic Markov category T
a morphism p : θ → x in T, the sampling morphism

A model of a statistical theory (T, p) is a supply preserving functor
M : T→ Stat.

Ω := M(θ) is the parameter space
X := M(x) is the sample space
P := M(p) : Ω→ X is the sampling distribution

Note: Statistical theories generally have many different models.



A few simple statistical theories

Example: The initial statistical theory (T, p) is freely generated by
one morphism p : θ → x on discrete objects θ and x .

Observation
Every statistical model P : Ω→ X is a model of the initial theory.

Example: The theory of n i.i.d. samples (T, p) is freely generated by
one morphism p0 : θ → x on discrete objects θ and x , with

p
θθ

x⊗nx⊗n

:=
p0 · · ·

n p0

θθ

xx xx

.



Theory of a linear model

The theory of a linear model (LM, p) is generated by
vector space objects β, µ, and y
conical space object σ2

linear map X : β → µ, i.e., morphism X : β → µ subject to
equations of linearity and determinism
linear-quadratic morphism q : µ⊗ σ2 → y

with sampling morphism p : β ⊗ σ2 → y given by

X

q

ββ σ2σ2

µµ

yy



Linear models, as models of a theory

The standard models M : LM→ Stat are linear models:
M(y) = M(µ) = Rn for some dimension n
M(β) = Rp for some dimension p
M(σ2) = R+

M(q) : Rn × R+ → Rn is isotropic normal family
XM := M(X ) : Rp → Rn is arbitrary linear map

The sampling distribution is then

M(p) : R
p × R+ → Rn

(β, σ2) 7→ Nn(XMβ, σ
2In)

Another model is a weighted linear model where, for fixed VM ∈ Sp
+,

M(p) : (β, σ2) 7→ Nn(XMβ, σ
2VM).



Bayesian statistical theories and models

A Bayesian statistical theory (T, p, π) consists of
a statistical theory (T, θ p−→ x)
a morphism I π−→ θ, the prior morphism

A model of a Bayesian theory (T, p, π) is a model M : T→ Stat of
the underlying statistical theory.

M(p) is the sampling distribution
M(π) is the prior
M(π · p) is the marginal or prior predictive distribution



Morphisms of statistical models

A model homomorphism between models M and M ′ of a statistical
theory (T, p) is a monoidal natural transformation

T Stat

M

M′

α

Proposition
The components αx : M(x)→ M ′(x) of model homomorphism are
supply homomorphisms. In particular, they are deterministic.



Morphisms of linear models

Let M,M ′ be linear models, as models of (LM, p), with designs

XM := M(X ) ∈ Rn×p, XM′ := M ′(X ) ∈ Rn′×p′ .

Proposition
A model homomorphism α : M → M ′ is uniquely determined by linear
maps A := αy ∈ Rn′×n and B := αβ ∈ Rp′×p such that

AA> ∝ In′ and AXM = XM′B.



Symmetries of statistical models

Corollary
An isomorphism of linear models α : M ∼= M ′, with n = n′ and p = p′,
is uniquely determined by linear maps A := αy ∈ CO(n) and
B := αβ ∈ GL(p,R) such that XM′ = AXMB−1.

Symmetry and invariance is a classical topic in statistics. Advantages
of our account:

it does not assume identifiability of model (or loss function)
it is not restricted to automorphisms or even isomorphisms
it ensures that transformations preserve all structure specified by
the theory, not just parameter and sample spaces
it makes symmetry a property of the theory and model, not an
extra structure added arbitrarily



Equivariance of linear regression

Ordinary-least squares (OLS) linear regression is
equivariant under model isomorphism (a classical result)
“laxly” equivariant under model homomorphism

Theorem
Let α : M → M ′ be a homomorphism of linear models. For any
y ∈ Rn and β ∈ Rp, if y ′ := αy (y) and β′ := αβ(β), then

‖XM′β
′ − y ′‖ ≤ a‖XMβ − y‖,

where a := √ασ2 ∈ R+. In particular, if α is an isomorphism, then

β̂ ∈ argmin
β∈Rp

‖XMβ − y‖ implies β̂′ ∈ argmin
β′∈Rp′

‖XM′β
′ − y ′‖.



Another theory of a linear model

The theory of a linear model on n samples (LMn, pn) is generated by
vector spaces β, µ, and y and a conical space σ2

linear maps X1, . . . ,Xn : β → µ,
a linear-quadratic morphism q : µ⊗ σ2 → y

with sampling morphism pn : β ⊗ σ2 → y⊗n given by

X1

q

· · ·
n

Xn

q

ββ σ2σ2

µµ

yy

µµ

yy



Linear models on n samples

A linear model M : LMn → Stat now assigns
M(y) = M(µ) = R
M(q) = N : R× R+ → R, the univariate normal family

Let M,M ′ be linear models on n samples, as models of (LMn, pn),
with designs (XM,i )n

i=1 ∈ Rn×p and (XM′,i )n
i=1 ∈ Rn×p′ .

Proposition
A model homomorphism α : M → M ′ is uniquely determined by a
scalar a := αy ∈ R and a matrix B := αβ ∈ Rp′×p such that

aXM,i = XM′,i B, ∀i = 1, . . . , n.



More theories of a linear model

Theories of a linear model include
(LM, p), of a general linear model
(LMn, pn), of a LM on n observations
(LMp, qp), of a LM on p predictors
(LMn,p, qn,p), of a LM on n observations and p predictors

Which theory is the right one? Wrong question.
Different theories allow different models and model
homomorphisms
Yet they are related by morphisms of theories



Morphisms of statistical theories

Definition: A (strict) morphism of statistical theories

F : (T, p)→ (T′, p′)

is a supply preserving functor F : T→ T′ such that F (p) = p′.

The theory morphism induces a model migration functor

F ∗ : Mod(T′)→ Mod(T)

(cf. Spivak 2012) by pre-composition:

T′

Stat
M

F∗7→
T T′

Stat

F

F∗(M) M



Morphisms between theories of linear model

Different theories of linear models are related by theory morphisms:

(LM, p)
general LM

(LMn, pn)
LM with n observations

(LMp, qp)
LM with p predictors

(LMn,p, qn,p)
LM with n observations and p predictors

Fn Gp

Fn,p Gn,p



Morphism between two theories of linear model

A theory morphism Fn : (LM, p)→ (LMn, pn)
sends µ to µ⊗n and y to y⊗n

splits the design matrix by rows:

Fn : X
ββ

µµ

7→
X1 · · · Xn

ββ

µµ µµ

splits the morphism q accordingly:

Fn : q
µµ σ2σ2

yy
7→

· · ·
n

q · · ·
n q

σ2σ2µµ µµ

yy yy

preserves the other generators



Theory of a generalized linear model

A theory of a GLM on n samples (GLMn, pn) is generated by
vector spaces β and η, a convex space µ, and a conical space φ
a discrete object y
maps g : µ→ η (link function) and h : η → µ (mean function),
which are mutually inverse:

g

h

µµ

ηη

µµ

= µµ and
h

g

ηη

µµ

ηη

= ηη .

linear maps X1, . . . ,Xn : β → η

a morphism q : µ⊗ φ→ y



Theory of a generalized linear model

The sampling morphism pn : β ⊗ φ→ y⊗n is

X1 · · · Xn

h · · ·
n h

q · · ·
n q

ββ

φφ

ηη ηη

µµ µµ

yy yy



Morphism between theories of GLM and LM

Fact: “A linear model is a special case of a generalized linear model.”

Formally, a theory morphism Gn : (GLMn, pn)→ (LMn, pn)
sends both µ and η to µ,
sends both g and h to the identity 1µ:

Gn : g
µµ

ηη

, h

ηη

µµ

7→ µµ

sends φ to σ2

preserves the other generators
Induces a model migration functor G∗n : Mod(LMn)→ Mod(GLMn).



Lax morphisms of statistical theories

A weaker notion of theory morphism allows for expansion of
parameter and sample spaces (cf. McCullagh 2002).

A lax* morphism of statistical theories (T, θ p−→ x) and (T′, θ′ p′−→ x ′)
consists of

a functor F : T→ T′

a morphism f0 : θ′ → F (θ) in T′

a morphism f1 : x ′ → F (x) in T′

such that the diagram commutes:

θ′ x ′

Fθ Fx

p′

f0 f1

Fp

*Called “colax”, not “lax,” in (Patterson 2020)



Samples of different sizes as lax theory morphisms

Recall the theory of n i.i.d. samples (T, pn). For any numbers m ≤ n,
projection gives a lax theory morphism

(1T, 1θ, πm,n−m) : (T, pm)→ (T, pn),

where laxness condition is

p0 · · ·
m p0

θθ

xx xx

= p0 · · ·
m

p0 p0 · · ·
n−m

p0

θθ

xx xx
xx xx

.



Conclusion

Summary:
1. introduced statistical theories in style of categorical logic
2. recovered statistical models as models of statistical theories
3. obtained notion of statistical model homomorphism
4. formalized relationships using morphisms of statistical theories
5. accompanied by model migration functors

Future work: lots!
mathematical investigation of linear algebraic Markov categories
compositionality of statistical theories and models
software and integration with probabilistic programming



Outlook

How can statistics support scientific theories and models broadly?
Traditionally, statistics has emphasized the formal testing of null
hypotheses, as if they exist in isolation
Rather, science involves an intricate web of interconnected
theories, models, experiments, and data

Again, a long precedent in philosophy of science:
[E]xact analysis of the re-
lation between empirical
theories and relevant data
calls for a hierarchy of
models of different logical
type. (Suppes 1966)

Suppes’ hierarchy of models:
1. theoretical model
2. model of the experiment
3. data model [roughly, a

statistical model]

How to make mathematics and statistics out of such ideas?



Thanks!

Main reference is my PhD thesis (Patterson 2020)
Available at https://www.epatters.org/papers/
Many more examples of statistical theories and models:
I contingency tables
I simple Bayesian and hierarchical models
I linear mixed models
I generalized linear (mixed) models
I ...

https://www.epatters.org/papers/
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