Description logic

Description logic (DL) is the dominant knowledge representation formalism, used by both OBO and OWL (Semantic Web).

Nomenclature

DL has a self-describing naming system [Baader et al, 2007, Appendix: DL Terminology]. Unfortunately, it is not entirely consistent across the literature.

My attempt at a summary is below. See also Evgeny Zolin’s encyclopedic page on complexity of reasoning in description logics .

  • AL\mathcal{A}\mathcal{L} [Attributive Concept Language, the most basic DL]
    • Atomic concept (AA), universal concept (\top), bottom concept (\bot)
    • Atomic negation (¬A\neg A)
    • Concept intersection (CDC \cap D)
    • Value restriction (R.C\forall R.C)
    • Limited existential quantification (R.\exists R.\top)
    • Concept hierarchy (CDC \subseteq D, CDC \equiv D)
  • ALC\mathcal{A}\mathcal{L}\mathcal{C} (equivalently ALUE\mathcal{A}\mathcal{L}\mathcal{U}\mathcal{E})
    • C\mathcal{C}: Concept negation (¬C\neg C)
    • U\mathcal{U}: Concept union (CDC \cup D)
    • E\mathcal{E}: “Full” existential quantification (R.C\exists R.C)
  • H\mathcal{H}: Role hierarchies (RSR \subseteq S, RSR \equiv S)
  • I\mathcal{I}: Inverse roles (RR^{-})
  • N\mathcal{N}: (Unqualified) number restriction (n R\geq n~R, n R\leq n~R, =n R= n~R)
  • Q\mathcal{Q}: Qualified number restriction (n R.C\geq n~R.C, n R.C\leq n~R.C, =n R.C= n~R.C)
  • O\mathcal{O}: Nominals [class literals] ({x1,x2,,xn}\{x_1,x_2,\ldots,x_n\})
  • F\mathcal{F}: Depending on author, EITHER
    • Functional roles (1 R\leq 1~R), a restricted form of Q\mathcal{Q}, OR
    • Agreement and disagreement [Baader et al, 2007, Table A.1]
  • R\mathcal{R}: Depending on author, EITHER
    • Role intersection (RSR \cap S), OR
    • Regular role inclusion axioms [regular RIAs] (R1R2RnSR_1 \circ R_2 \circ \cdots \circ R_n \subseteq S)
      • Regular means acyclic, which ensures decidability
      • May include other features: disjoint roles, reflexive, irreflexive, etc.
  • (D)(\mathcal{D}): Concrete domains, e.g., natural numbers with <,,=,>,<,\leq,=,>,\geq

Languages

  • S\mathcal{S} = ALC\mathcal{A}\mathcal{L}\mathcal{C} + transitive relations [as declaration, not as transitive closure]
  • OWL 1 Lite = SHIF\mathcal{SHIF} (ref )
  • OWL 1 DL = SHION\mathcal{SHION} (ref )
  • OWL 2 DL = SRIOQ\mathcal{SRIOQ} (ref )

Literature

Books

  • Baader et al, 2007: The Description Logic Handbook, 2nd ed.
    • Most comprehensive reference on DL
    • Covers OWL 1 (Ch. 14) but not OWL 2
  • Robinson & Bauer, 2011: Introduction to Bio-ontologies
    • DL from a bioinformatics perspective
  • Hitzler et al, 2010: Foundations of Semantic Web Technologies
    • Coverage of RDFS and OWL 2 with more mathematical formality than usual

Surveys and tutorials

  • Rudolf, 2011: Foundations of description logics (doi, pdf)
  • Krotzsch, Simancik, Horrocks, 2012: A description logic primer (arxiv)

DL in Semantic Web

  • Horrocks, Kutz, Sattler, 2005: The irresistible SRIQ (pdf)
  • Horrocks, Kutz, Sattler, 2006: The even more irresistible SROIQ (pdf)
  • Knorr, Alferes, Hitzler, 2011: Local closed world reasoning with description logics under the well-founded semantics (doi, pdf)
  • Sengupta, Krisnadhi, Hitzler: 2011: Local closed world semantics: Grounded circumscription for OWL (doi, pdf)

Critical perspectives on DL

  • Doyle & Patil, 1991: Two theses of KR: Language restrictions, taxonomic classification, and the utility of representation services (doi, pdf)
    • Cogent criticisms of the restricted language thesis and restricted classification thesis
  • Hitzler, 2009: Towards reasoning pragmatics (doi)